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EXECUTIVE SUMMARY 

This report discusses the major natural hazards threatening the welfare of the community at 
Franz Josef Glacier. These include hazards caused by recent changes in the Waiho River, and 
those due to the proximity of the village to the Alpine Fault, one of the planet's major active 
geological boundaries. 

The Callery/Waiho River system is discussed both as a natural system, and as one disturbed 
by human intervention. Our analysis of the system's behaviour over the last 100 years leads 
us to a conclusion that is radically different from past studies: we believe that the immediate 
serious dangers now presented by the river result directly from the well intentioned, well 
constructed, but ad hoc works that attempt to hold this powerful river in too small a portion 
of its historic flood plain. After sixty years of sustained efforts to constrain the river, the 
Waiho has aggraded to an unprecedented level and now is poised to break out of its channel 
at one or more of a number of weak points along the river banks. The site which breaches 
first could be selected intentionally, to create an outcome that is less undesirable than might 
otherwise eventuate by chance. Such a choice will have to be made very soon if it is to be 
useful. 

Most of the five likely break-out points on the left (south) bank potentially threaten half or 
more of the assets on that side of the river because a new river path there would cut a wide 
swath to the sea, following SH 6 and Docherty's Creek. There are two likely break-out points 
on the right (township) bank, but only the more northerly, the break-out of the Waiho River 
into the incised channel of the Tatare River above the Waiho Loop, leads the river from its 
present active channel. Continued maintenance of existing river-control works to keep pace 
with the present aggradation of the river channel will lead in the short term to the Tatare 
break-out  

Any break-out towards Docherty's Creek may be reversible, as such break-outs have been 
reversed in the past. If Docherty's Creek is to be the preferred option for a new river course, 
the break-out may have to be assisted, because otherwise it is likely to be only temporary. 
Any break-out to the Tatare River would quickly become irreversible. All of the alternative 
break-out scenarios have potentially damaging and somewhat unpredictable outcomes: that to 
the Tatare is the least predictable, because such an event has never occurred before. 

Break-out of the Waiho into the Tatare will induce rapid incision of the Waiho River across 
the portion of the fan above the Waiho Loop. This incision of up to 15 metres may extend 
upriver to above the village and highway bridge. If uncontrolled, it could lead to loss of the 
village oxidation ponds, the SH 6 bridge, and may undercut part of the village. Break-outs 
elsewhere may also induce river incision at the fan head, but the incision is unlikely to be as 
large. 

The report considers the following options for future community management of the Waiho 
River: 

• Hold the river in its present course; 

• Let the river choose a new course (this is the do-nothing option); 

• Choose a new course for the river; 
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• Make a new course; 

• Choose where the river will not make a new course; 

• Maintain the status quo. 

The last two options may have similar outcomes because the actions of past management 
have been to prevent the river from taking potential new courses as progressive river 
aggradation has made them available. If the status quo is maintained, the river will not be 
held in its present course, in even the short term. 

We  feel that the hazard presented by the river should inherently be reducible (i.e. reversible) 
because it has been largely created by human use of the river’s active flood plain, and the 
consequent need for engineering intervention. The engineering works in turn have led the 
problem to escalate to its current extreme form, and now other areas are threatened which 
were never endagered by the original threat. 

The earthquake hazard stands in marked contrast to the river hazard, because this hazard is 
escalating through natural processes and cannot be reduced. The township straddles a major 
active fault which is expected soon to produce an earthquake greatly exceeding current 
building design standards. Analysis of available data on past movements of the Alpine Fault 
indicates a 10% probability that the next earthquake will strike within 5 years. It will be a 
Magnitude 8 earthquake, a Great Earthquake on world standards, and it will cause major 
damage throughout much of South Island, and perhaps beyond. The community at Franz 
Josef Glacier (and many communities elsewhere) will suffer extensive damage, injuries and 
some fatalities, and may be isolated from substantial outside assistance for several days or 
perhaps longer. An efficient and comprehensive local emergency response will be essential. 
Fuel tanks (petrol, diesel and LPG) within the central business area of the township currently 
are within the zone of expected deformation around the fault, and are extremely likely to 
rupture during the earthquake. Accidental ignition of the leaking fuel would cause a 
disastrous fire in the town centre. Even without fire, substantial damage to property in the 
township is largely unavoidable because of the extreme shaking intensity expected close to 
the fault: adequate earthquake insurance cover is likely to prove to be the most effective 
mitigation measure for this extreme event. 

The earthquake and fault movement will also strongly affect river behaviour. Channels will 
be offset by about 8 metres horizontally and 3 metres vertically. River banks will collapse, 
especially those newly built up to keep pace with the aggrading river. As the river system 
sluices earthquake-triggered landslide deposits in the headwaters downstream, there will be 
massive, rapid aggradation at the fan head the like of which has not been seen in historic 
time. A well planned and frequently rehearsed emergency response which can evacuate the 
entire community to high ground is seen as the only practical mitigation available to 
minimise the outcome of this potential disaster. 
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1.0 INTRODUCTION 

This report is intended as a non-technical discussion document on natural hazards threatening 
the welfare of the community at Franz Josef Glacier. It discusses recent changes in the 
powerful Waiho River, and the community's proximity to the Alpine Fault, one of the planet's 
major active geological boundaries. The report examines past, present and possible future 
trends in the river's behaviour, and likely effects of an impending major earthquake. It 
considers how the community might mitigate the effects of the hazards on future village life. 

The report has been prepared by The Institute of Geological & Nuclear Sciences Ltd (GNS) 
for the West Coast Regional Council. The consultants' brief for preparation of the report is 
given in Appendix 1. 

The purpose of the assessment is to: 
 

•  Provide the Franz Josef Glacier community with an overview of the behaviour of the 
Waiho River, first as a natural system, and now as one influenced by human intervention. 

 

•  Identify, quantify and rank the natural hazards within the village and peripheral areas. 
 

•  Identify the standard of protection (structural and non-structural) from natural hazards 
(principally flood-induced) appropriate for the community. 

 

•  Assess the adequacy of existing protection and management to meet these standards. 
 

•  Identify some courses of action that the community could choose from that would enable 
them to avoid or mitigate the identified hazards. 

 

•  Identify the possible consequences of taking any (or none) of these actions. 

This report: 
 

• Provides a concise history of the development of the Waiho River alluvial fan, based on 
examination of historical records and geomorphic evidence. 

 

• Identifies what could happen: the types and possible likely extents of hazardous events, 
based on examination of historical records and geomorphic evidence left by past 
occurrences, and how these hazards may now have been modified by engineering work. 

 

• Identifies and quantifies the possible adverse effects of such hazardous events, to the 
extent of available evidence. 

 

 • Identifies what can be done to avoid or mitigate these effects, to levels which might be 
acceptable to the parties concerned (community and visitors, businesses and shareholders, 
DoC, Westland District Council, West Coast Regional Council, Transit NZ). 

The study has involved scientists from The Institute of Geological & Nuclear Sciences Ltd, 
and Lincoln University. The report was written jointly by Dr Mauri McSaveney (GNS), and 
Dr Tim Davies (Department of Natural Resources Engineering, Lincoln U.). Information on 
seismicity and seismic hazards was compiled by Dr Kelvin Berryman of GNS. 

Drs McSaveney and Davies inspected the area as part of this study between 7-24 April 1998. 
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1.1 Natural hazards and the Franz Josef Glacier Community 

The Waiho River in fresh or flood has been, and always will be, a very powerful and 
dangerous river. Flooding and associated changes in bed level and channel location have 
frequently caused concern throughout the brief history of occupation of the area. Persistent 
river-bed-level rises over the past 60 years have expanded the areas at risk, and heightened 
the dangers, but these trends may be reversible. Because of the nature of the area, however, 
flooding, and its associated hazards of erosion, aggradation, and river-channel changes will 
always be serious threats to parts of the Franz Josef Glacier community. 

The Waiho area has been settled for only about 120 years. This is too short an interval to 
provide a complete picture of the area's likely range of adverse natural events. Although the 
historical range of events has been alarming, the true range is likely to be far worse. Evidence 
of the true range is recorded in the landscape and the deposits underlying it. 

To the detriment of general community safety, the focus of attention on natural hazards in the 
Waiho area has always been on the immediate threats presented by the Waiho River. This has 
resulted in the community centre developing close to the Alpine Fault - now recognised as 
one of the world's great faults. The Alpine Fault passes through the township: accumulated 
earth forces have the fault ready primed to explode into spectacular and destructive action. It 
can be likened to a time bomb that cannot be defused. We cannot know in advance when it 
will trigger, but we now know that the longer it goes without rupture, the worse will be the 
outcome. The next Alpine Fault earthquake, with an expected magnitude (Mw) of 8.0, is the 
most devastating natural event that the township is likely to experience. The earthquake and 
its consequences (infrastructure collapses, fires, landslides, floods, diseases, and financial 
ruin) seriously threaten the survival of the Franz Josef Glacier community. It is not the only 
community so threatened: some deaths are expected as far away as Christchurch (The Press, 
Saturday, 6 June 1998). 

 

2.0 TECHNICAL BACKGROUND 

2.1 Geomorphic Processes 

2.1.1 Alluvial Fan 

An alluvial fan is an area formed by deposition of sediment by a stream as it widens on 
leaving a confined channel in a narrow valley. Over long time intervals, the stream moves to 
and fro across the fan, dropping sediment as it goes. The deposited sediment aggrades the 
bed, forcing channel break-outs (technically called avulsions - the sudden switching of 
channel position) to occur. At the fan-head, aggradation can be very rapid if a large amount 
of sediment enters the river a short distance upstream. If sediment can be removed from the 
toe of the fan (by the sea or another river) the fan will build to an equilibrium profile. With 
such a profile, the combination of water flow and fan slope gives the river the power over the 
long term to transport enough sediment down the fan to the toe to balance the amount of 
sediment being supplied to the fan head. At equilibrium, the amounts of materials being 
delivered to the fan head, being shifted about on the fan surface, and being removed from the 
toe are each equal to one another over the long term. The incoming sediment, however, is not 
all transported directly through the fan system to the toe. 
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All parts of an alluvial fan can flood during high flows, but seldom simultaneously. 

 

2.1.2 Braided vs. single-thread meandering river channels 

Rivers flow in sinuous channels when the river banks are free to be shaped by the river. 
Under some conditions of slope, river flow and sediment load, a river will adopt a single 
sinuous (meandering) channel; with steeper slopes and higher sediment loads, it will form 
multiple channels which split and merge in a braided pattern. Over a limited range of slope 
and sediment load for a given water flow, the river may adopt either pattern and can be 
manipulated to switch from one to the other. 

The Waiho River is braided over most of its length most of the time, but locally it maintains a 
single meandering channel. Precipitous rock slopes constrain the Callery River to a single-
thread channel over most of its length. 

In addition to these river forms, steep mountain torrents can form a series of pools and riffles, 
or occupy steep, straight, narrow, U-shaped channels cut in bed rock - these latter are carved 
by repeated powerful debris flows (see below). These are not to be confused with the very 
much larger U-shaped valleys cut by glaciers. 

 

2.1.3 Debris Avalanche 

A debris avalanche is the flow of debris consisting of water, rock, soil, and plant cover 
resulting from the collapse of the surficial mantle of loose, weathered material on a steep hill 
or mountain side, usually caused by heavy rain. The material in a debris avalanche flows very 
much like a fluid and can acquires a high velocity. Debris-avalanche scars are common on 
most steep, vegetated slopes in south Westland. They show clearly as vertical bare stripes on 
the slopes when the scars are fresh, and stripes of even-aged plants on older scars. Debris 
avalanches can be of almost any size, but small ones are much more common than large ones. 

 

2.1.4 Debris Flow 

During heavy rain, erosion of the land bordering stream channels can be so intense that very 
large quantities of sediment enter the stream, increasing the viscosity of the flow. This can 
alter the way in which sediment grains interact with each other. Instead of the flowing water 
carrying the sediment along with it as is normal, the water and sediment form an intimate 
mixture which flows very much like wet concrete. This is called a debris flow; it can easily 
be twice as dense as water, and can carry large boulders along on its surface. Such flows 
usually move as discrete surges, and so have greater flow depths than the corresponding 
uniform flow; large boulders tend to accumulate at the front of surges. 

Debris flows often are generated by debris avalanches falling into narrow confined channels.  

Debris-flow surges can move at high velocities (about 10 metres a second) and can be very 
destructive, scouring narrow channels deeply and growing in volume as a consequence. On 
leaving a narrow channel (for example, on arriving at a fan head), however, a surge can stop 
suddenly, forcing the next surge to divert around it and follow a different course down the 
fan. 
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Debris flows need a steep slope to develop, and do not occur on slopes of less than about 5 
degrees (9%). If a debris flow enters a river it can dilute to form what is known technically as 
a hyper-concentrated flow - more like a moderately thick soup than wet concrete. 

Debris-flow processes are very energetic and intense, and it is not normally possible to 
provide reliable protection against them by engineering. Debris flows are much more 
dangerous than most other alluvial-fan processes because they involve much greater volumes 
of sediment and therefore much more intense aggradation. 

Debris flows occur frequently on the steep mountain slopes inland from the Alpine Fault. 
Rarely, materials of debris-flow character pass through the Callery Gorge, but more usually 
they are diluted to form hyper-concentrated flows by the large volume of water in the Callery 
Gorge during high flows. 

Debris flows are only likely to be a problem at the Waiho fan head if a particularly large one 
is generated in the Callery Gorge during the break up of an earthquake-generated landslide 
dam, when there is likely to be a huge quantity of loose rock in the channel bottom to be 
picked up by the flood. 

 

2.1.5 Rock Avalanche 

A rock avalanche is the flow of rock debris resulting from the collapse of a steep 
mountainside or mountain summit, usually caused by an earthquake, or less commonly by 
heavy rain or glacial erosion. Although the debris may be dry, it flows much like a fluid. The 
debris can travel very fast over extraordinarily long distances. Little is understood about 
rock-avalanche motion, except that large rock avalanches for some reason go farther in 
proportion to their size than small ones. 

A rock avalanche is very destructive and most things are obliterated when hit by one. 

A rock avalanche could occur from any of the steep slopes between the Alpine Fault and the 
main divide. Countless rockfalls and some large rock avalanches are expected in the upper 
valleys of the Waiho, Callery and Tatare Rivers during the Alpine Fault earthquake. 
Although the rockfall sites are easily predicted from the distribution of historical rockfalls, 
sites of large rock avalanches are unpredictable because they are critically dependent on the 
amplification of the earthquake shaking within the steep mountain landscape, and so 
prediction would need unavailable information on the unique propagation of the particular 
earthquake's waves of shaking energy. 

Only the slope immediately above the Franz Josef Glacier township poses a direct threat to 
the community from potential rock-avalanche run-out. There is a reasonable certainty that the 
slope above the township has not failed catastrophically in the time since expanded glaciers 
deposited the Waiho Loop moraine some 13,000 years ago (or we would see a characteristic 
scar on the slope and some evidence of its deposits), and hence it has survived through at 
least 50 major episodes of severe ground shaking. Although it could fail in the next great 
earthquake, there is very little likelihood that it will fail. 

 

 

2.2 Relevant terms used in the Building Act (1991) 



 
 

Institute of Geological & Nuclear Sciences  5 Hazard assessment for Franz Josef Glacier 

Erosion is the process of removal of land, usually by the action of running water. In the 
Waiho context, this is scour of river banks, and excavation of a new channel after a river 
break-out (avulsion - see below). 

Avulsion is the switching of a river or individual channel from one course to another; the flow 
may create a new channel or use a previously abandoned one. This historically has been a 
major hazard on the Waiho River fan. It is the major immediate hazard at present on the 
Waiho Flats. In this report, we have used the term "break-out" in place of this technical term. 

Alluvion is an obscure term which in the context of the act probably was intended to be the 
more common technical term alluviation, which is sediment deposition both in the stream 
channel or on adjacent land. Sediment deposition historically has been a major hazard on the 
Waiho River fan. The Resource Management Act (1991) uses the more obvious term 
sedimentation in identical context to the Building Act's alluvion. The movement of slugs of 
sediment through the channel system discussed in this report is by a combination of 
alluviation followed by erosion. 

Falling debris in the Franz Josef Glacier context is rocks and trees falling from the steep 
slopes behind the township, and rockfalls and rock avalanches in the upper valleys. Falling 
debris historically is a major hazard in the upper Waiho Valley, but not within the township 
area, or elsewhere on the fan.  

Subsidence occurs with ground-water abstraction in some areas, collapse of land over 
abandoned coal and gold mines, collapse into limestone caverns, collapse over buried melting 
ice, and differential compaction when soils liquefy during earthquakes. It is not a significant 
hazard away from the immediate area of the Franz Josef Glacier. 

Inundation means flooding with water, either from flooded streams, or directly from heavy 
rain. As with avulsion and alluviation, this historically has been a major hazard in the area. 

Slippage means landslides and could be interpreted to cover advancing glaciers which are not 
mentioned in the Building Act. These have not been problems within the township area, but 
the collapse of high terrace banks when undermined by the river are landslides. 

 

2.3 Hazard Frequency and Return Period 

Natural hazards result when human activity is in conflict with dangerous but infrequently 
active natural processes. These processes are caused by weather, rivers and earthquakes 
acting on the landscape. They act in different intensities, and in different combinations at 
different times. A hazard event usually is measured by its magnitude. While we might know 
much about the conditions required for a hazard to occur, it is not usually possible to predict 
when a hazard will occur, or how big it will be. The frequency with which particular hazard 
events of known magnitude occur provides information from which the probability of their 
occurrence can be calculated. Information on the probability and magnitudes of particular 
hazards is necessary when communities plan to cope with or mitigate hazards. 

Although a probability of occurrence can be estimated, this does not allow us to predict 
when a given hazard will occur; all we can know about a particular hazard is that: 

• if it can occur, it will occur; 

• if it is driven by the weather alone, it is as likely to occur next week as during any other 
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week in the future. 

Some hazards "develop" over time; for example, once a debris avalanche has occurred at a 
site and a rock surface has been cleaned of loose debris, a long time has to elapse before 
enough loose debris accumulates on the slope to be able to form another debris avalanche - 
the longer the time between events, the more debris can accumulate, and the larger the next 
debris avalanche can be. Earthquakes caused by the movement of particular faults are hazards 
of this type. For these types of hazards, the probability of their occurrence changes over time. 
It can be very important to know just where in the hazard cycle the present moment might be 
- as with the Alpine Fault which is known to be approaching an imminent major rupture 
(Appendix 2).  

It is important to realise that it only makes sense to quote a probability of occurrence of an 
event during a stipulated period of future time. There are a variety of ways of expressing 
these probabilities over time. For example, an event can be said to have a 0.01 probability of 
occurring in any year; this is the same as saying that it has a 1% probability of occurring in 
any year. Another way to express this is as the time period over which only one event is 
expected to occur: in this example 0.01 per year is one event per 100 years, hence the 
expression "a 100-year flood". It always is possible to get two "100-year" events just days, 
weeks or a few years apart, but it is improbable.  

For most communities, the next 50 to 100 years is a sensible planning horizon. Although a 
"100-year" event sounds awfully rare, there is a 1-in-5 chance that it will occur during the 
next 20 years; about the same as throwing a six when rolling a die (1-in-6 chance). Are such 
risks acceptable? An event of 1% probability in a year will occur about once during the next 
100 years, i.e. it is almost a certainty in that time and if a community is to last that long, its 
facilities must be able to survive such an event. Should community facilities be able to 
survive the 500-year event? These have a 1-in-5 chance of occurring in the next 100 years.  

There are big events and small events; they can occur at any time. It is often impossible, and 
usually uneconomic, to engineer protection against big events. Where big events can occur, 
and protection is not possible, warning and evacuation systems can allow continued 
occupation of a site. Where such systems are not feasible (due to lack of warning time, for 
example), occupation of the site involves accepting a serious risk of death, and may not be 
sustainable in the long term. The next Alpine Fault earthquake may come into this latter 
category because effective warning is not likely, whereas Waiho River floods appear to 
belong to the former. It remains to be determined if warning is feasible for Callery River 
dam-break floods. 

The event probabilities referred to above are effectively the same as the "risk" of the event 
occurring in a stated future period of time; e.g. an event with a 1% probability of occurrence 
in one year has a "1% risk" of happening in that time (risk here is used in a non-technical 
sense). The levels of risk usually thought to be acceptable vary with circumstances. Fell 
(1993) examines the risks usually thought to be acceptable in the context of landslides, and 
concludes that the highest level of risk that can be accepted is about 0.001 in any one year, 
this is about the same as the "1000-year" event. This is the case for "voluntary" risk, i.e. risk 
that people are fully aware they are taking, and choose to take. If the risk is "involuntary", i.e. 
the risk-takers are either unaware of, or are forced to take the risk (as a guest at a resort, or in 
a workplace) then the maximum acceptable event is the "100 000-year" event. Of course, the 
level of acceptable risk also depends on the expected outcome - as the likelihood of death, 
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injury or financial loss decreases, so the level of acceptable risk increases. 

These event probabilities can be illustrated by looking at the odds of winning Lotto. Where a 
win is choosing 6 numbers in any order from 40 numbers, the odds of winning are given by: 

Probability of winning = 6/40 x 5/39 x 4/38 x 3/37 x 2/36 x 1/35 = 0.00000026 

At 50 cents per chance, a person would have to spend $370 a week to make their winning 
first prize in Lotto occur on average once each 100 years, $37/week for once each 1000 
years, and 37 cents a week for once in 100 000 years! There is a 10% probability that the 
Alpine Fault will rupture within five years: to have such odds of winning Lotto, a person 
would have to spend $740 a week! 

There are, unfortunately, several insurmountable problems with estimating the return periods 
or frequencies of events on the Waiho River. The first is that the quantities of water flowing 
in the river are unknown, so that it is not possible to determine how frequently a flow of a 
given magnitude occurs. The second problem is associated with location. A river on an 
alluvial fan is not a fixed feature, but moves about within and between storms. Sometimes a 
flood flow will split between many channels; sometimes it will be contained within just a 
few. At lower total river discharges, the number of active river channels commonly reduces. 
The discharge in any particular channel, however, need not reduce, and may even increase 
depending on how the flow splits between channels. Also, individual channels themselves 
grow and decay, and may move. There are probabilities associated with each of these, and the 
net probability of any particular combination of these probabilities is obtained by multiplying 
them together. Because probabilities are always less than 1.0, the probability of a particular 
combination of events happening is always less that of any one of them occurring (it is much 
easier to get one of the Lotto numbers right than to get all six of them right together!). 

When a river can split into a number of different-sized channels, and these can go in any of a 
number of directions, the return period of a given flow at a given point on the fan surface is 
very different from the return period of the total river flow at the same flood peak. For 
example, a flood of one-year return period can occur in the flow at the SH 6 bridge, but there 
may be little, or even no water adjacent to the SH 6 stopbank by Canavan's Knob if the river 
happens at the time to be flowing mostly on the other side of the fan. Conversely, at normal 
river flow at the SH 6 bridge, a flow of relatively high return period can occur against the 
Franz Josef Glacier Hotel and oxidation-pond banks merely because the river happens to be 
largely flowing in a single channel against that bank, instead of splitting its flow between 
numerous braids. 

A braided river on an alluvial fan may be able to safely pass a flood of a given total discharge 
in one particular braid configuration, but not be able to contain it in another configuration. 
This is particularly so if there are big differences in local fan geometry from one side of the 
river to the other, for example if there are artificial containment banks on only one side. In 
the Waiho River channel configuration of late April 1998, and using the conventional flood 
definition that a flood occurs when a river spills beyond its banks, there was a continuous 
flood on the right bank, 200 metres downstream of the oxidation ponds, because there the 
river was spilling over pasture in the process of creating a new channel. 

The hazard of overtopping the Waiho River stopbanks needs a combination of high bed level 
with high river flow: the higher the bed level at the time, the smaller the high flow needed to 
cause overtopping. Both bed level and flow height have associated probabilities of 
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occurrence, so the probability of a bank being overtopped is the product of the two 
probabilities. Of course, the probability of a particular bed level occurring during a flood 
changes over time: the probability of achieving a particular high bed level during a flood is 
much higher if the bed level already is high before the flood.  

For these reasons, event probabilities stated in this report are neither precise nor very 
significant. They merely provide a guide to planning and design. 

 

2.4 Building Act 

Section 36 of the Building Act (1991) deals with limitations and restrictions on building 
consents for land subject to erosion, avulsion, alluvion, falling debris, subsidence, inundation 
or slippage, and the means whereby territorial authorities may limit their civil liability if 
buildings are damaged by these adverse events.  

Section 36 provides that if the authority believes that a building site is likely to be subject to 
one or more of the above problems (or if the building itself might cause such problems) it can 
approve the building if it is satisfied that adequate provision has been or will be made to 
protect the land or building (or to restore any damage to the land or other property 
concerned), or it can issue a notification that it will not be under any civil liability if later the 
building suffers damage arising from any of the likely events. 

The current issue at Franz Josef Glacier township involves the likelihood of erosion, 
avulsion, alluvion and inundation on the Waiho River fan, and whether existing protection 
works are adequate to make such events unlikely, or could be upgraded to make them 
unlikely. 

Building codes (E1.3.2 and 1.3.3) related to surface water and drainage suggest that likely 
could be considered to be a 2% probability in any one year of an event occurring severe 
enough to cause flooding of the ground floor of the building. That is, damage to the ground 
floor is to be expected to occur on average only once in any 50-year period. For events likely 
to cause extensive structural damage, however, NZS4203 recommends probabilities of 0.2% 
(500-year return period) for wind and earthquake loading. Thus, the 2% probability event 
may be appropriate for some flooding events on the Waiho Fan - as with flooding by seepage 
through the stopbanks, but a 0.2% probability should be considered when there is a likelihood 
of significant structural damage - as with any building in the way of the Waiho in flood. 

We note that there are no river-control works on the fan head of the Waiho River with a 
demonstrated capacity to withstand the 2% probability-per-year water-surface level delivered 
by this river system (and nobody yet knows what this level is!). Also, there is no possibility 
of engineering to provide protection from the 0.2% probability-per-year events because the 
magnitudes of these events defy our comprehension: there is no evidence of such extreme 
events occurring, because the landscape here is so young that it has not yet had the chance to 
experience and record such rare events! 

Last, we note that the expected seismic loading from a Magnitude (Mw) 8.0 earthquake in the 
area greatly exceeds the accepted New Zealand earthquake building-design codes for all 
buildings except major hospitals (and national museums). At the expected level of shaking, it 
is reasonable to suppose that well constructed buildings will suffer structural damage, but 
they should not collapse.  
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2.5 Resources, Emergencies and Hazardous Substances 

The Resource Management Act (1991) covers wider issues than buildings, and includes the 
provision for sustainability of resource use, including the sustainability of land uses, and the 
protection of the environment from unsustainable uses. It also includes the protection of 
outstanding natural features and landscapes from inappropriate subdivision, use and 
development. For hazard management at Franz Josef Glacier, consents are required to 
undertake or to change river-containment works, to alter landscapes, and to take or discharge 
water into streams or underground aquifers. Ground and surface waters must be protected 
from contamination, and records kept of known hazard occurrences (or likely occurrences) in 
the area.  

The Resource Management Act also considers safe storage of hazardous materials, but the 
Hazardous Substances and New Organisms act replaces this part of the legislation. 

New Emergency Management legislation places greater responsibility for emergency 
planning with the local community. This is not a central government abrogation of 
responsibility, but a recognition that the initial emergency response may be needed too 
quickly to be effectively delivered from afar, and at times and under conditions when it 
cannot be delivered from afar. At Franz Josef Glacier, across the river may at times be too 
far.  

 

3.0 GEOMORPHIC BACKGROUND 

3.1 Physical setting 

The Waiho-Callery River system flows west from the main divide of the Southern Alps to the 
Tasman Sea (Fig. 3.1a, b). In this area, the divide is above 2500 metres, rising to over 3000 
metres in several places. The permanent snowline is at about 1800 to 2000 metres, and 
glaciers mantle a significant part of the catchments at higher altitudes. 

The Tasman Sea is 30 kilometres from the main divide, and the low-altitude alluvial fan of 
the Waiho-Callery system covers about half this distance. Slopes between the mountain front 
and the main divide are very steep, the result of geologically rapid uplift of the mountains. 

The drainage system consists of the major catchments of the Callery and Waiho Rivers, 
together with the smaller ones of Tatare River and Docherty's Creek (Fig. 3.1) and a number 
of minor streams. The Callery River has the largest mountain catchment area; it is the major 
contributor of water and sediment into the Waiho River system. The Callery and Waiho join 
about 500 metres upstream of the township of Franz Josef Glacier, and flow to the sea across 
the alluvial fan of the Waiho Flats. 

The Tatare emerges from the mountains 1.5 kilometres north-east of the Waiho, and flows 
across its incised fan to a gap in the forested Waiho Loop (Fig. 3.1b), a former glacier 
terminal moraine that is about 13 000 years old. A kilometre downstream of the Loop, it joins 
with the Waiho River. Docherty's Creek emerges from the mountains about 4 kilometres west 
of the Waiho-Callery confluence, and flows along the south-western side of the Waiho Flats 
before crossing to the other side to join the Waiho. Stony Creek flows into the eastern end of 
the Waiho Loop and joins the Tatare at its exit through the Loop. North of Stony Creek, a 
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small creek drains around the outside of the Loop to Lake Pratt and the Tatare. Lake Pratt is 
dammed by a small fan of the Tatare where the river exits through the Loop. When the Tatare 
is in flood, drainage of Lake Pratt is reversed and silt-laden Tatare water enters Lake Pratt. 

The water that powers the river system comes mostly from the prodigious precipitation in the 
mountain headwaters. Some runoff comes from the melting of snow and glacier ice, but most 
of the flood runoff comes directly from rain. The average annual precipitation in the upper 
headwaters is not known, but it is estimated to be at least 11,000 millimetres, based on a few 
scattered measurements. There are very strong variations in annual precipitation within the 
headwaters, with precipitation generally increasing inland. The zone of maximum 
precipitation probably lies roughly parallel to, and slightly west of, the main divide, but its 
precise location has not been determined by measurement. Local rainfall also varies markedly 
in individual storms. For large storms, the total depth of rain falling on the upper drainage 
basin may be two to three times greater than that recorded at the Franz Josef Glacier 
township rain gauge, west of the mountain front. Within the catchment, the highest intensities 
of rain that can fall over a short term (1-60 minutes) are not very different from place to 
place: maximum intensities are likely to be about 2 millimetres a minute. The much larger 
annual precipitation in the mountains arises because heavy rain is more frequent and lasts 
longer there, rather than from higher intensity rain when it is raining. 

Intense storms are frequent in the area: at the township, storms producing 200 millimetres of 
rain in 24 hours occur about once a year; 600 millimetres over 3 days occur every few years. 
Precipitation often falls as rain up to 3500 metres altitude. In colder conditions, a substantial 
proportion of the precipitation falls as snow at higher altitudes. Much of the runoff generated 
in the upper catchment areas enters glacial drainage systems such as that of the Franz Josef 
Glacier. 

The rocks in the river catchments southeast of the fault are mostly very highly 
metamorphosed rocks - schists and gneisses of various types, but there are some much less 
metamorphosed rocks including greywacke close to the main divide. The lowland fans are 
constructed of sediments, largely gravel and sand, eroded from the mountain catchments. The 
sediment forming the Tatare River (and Stony Creek) fan is very much finer than that 
forming the Callery-Waiho fan. The Waiho Loop is composed of very bouldery glacial 
moraine. 

The Waiho River has deposited a huge alluvial fan where it exits from the mountains at a 
steep front formed by uplift along a major geological boundary, the Alpine Fault. This fault 
runs along the mountain front, and is widely accepted as the local boundary between two 
great moving plates of the world's crust. Here, the Pacific tectonic plate is in a sliding 
collision with the Australian plate. A steady differential movement of the plates of 30 
millimetres a year is measured between the east and west coasts of New Zealand: most of this 
movement is being used to "wind up the spring" that drives the Alpine Fault. 

The Southern Alps mark the crumpled edge of the Pacific plate, piling up against the 
Australian plate, and the Alpine Fault marks where the two plates slide past each other. Slip 
on the fault averages 25 to 30 millimetres a year over the long term, but no slip has occurred 
in historic time. There is evidence that the fault last moved in about 1717 AD (see Appendix 
2). Since then, the rocks around the fault are thought to have already accumulated enough 
elastic strain energy to cause future movement of about 8 metres horizontally and 3 metres 
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vertically, rupturing the fault along 400 kilometres of its length. This is enough stored energy 
for a Magnitude (Mw) 8.0 earthquake if it were to occur today (Mw refers to Moment 
Magnitude which more accurately measures the earthquake energy release than do other 
magnitude measures such as the now outdated Richter Magnitude, or the Local Magnitude, 
ML, usually reported immediately after earthquakes). 

Traces of past fault movement can be seen along the foot of the steep slopes to the northeast 
and southwest of the Waiho River. Across the fan heads of the Tatare River and Docherty's 
Creek, erosion and sediment deposition have obliterated the fault traces. Within the township 
of Franz Josef Glacier, a clear trace of the last movement on this fault crosses SH 6, where it 
can be seen as a marked rise in the main road between the service station and the DoC 
visitors' centre. This trace was never simply a clean sharp break in the landscape which has 
become rounded by erosion and road building. Although the fault trace has been modified 
within the town, it always was part break and part fold over a zone several tens of metres 
wide. The folding is the result of the propagation of a relatively sharp break in the underlying 
bedrock up through the overlying river gravels which form the old alluvial fan remnant on 
which the township is sited. Further folding of this zone are expected in the next rupture. 
Traces of the last movement are missing on the opposite side of the Waiho River, indicating 
that the river has trimmed these surfaces since the last fault movement (i.e. since 1717 AD). 
Further fault movement is a serious hazard in itself, and the effects of fault movement on 
river behaviour are also significant. 

 

3.2 The Waiho River as a natural system 

The Waiho-Callery River drainage network is developed in one of the planet's more actively 
changing landscapes. A very young mountain range - the Southern Alps - has been thrust 
high into the moisture-laden Roaring Forties, so the drainage system has to cope with the 
rapid runoff of huge amounts of water, in which is mixed large amounts of eroded sediment. 
Most fine sediment (silt and sand called wash load and suspended-sediment load) moves 
continuously in suspension at the same speed as the water. The rest of the sediment load 
moves discontinuously, along the bed (bed-material load) much more slowly than the speed 
of the water. Therein lies the essence of why the Waiho River has been so difficult to manage 
successfully. 

The Waiho-Callery River drainage network functions in the landscape as a conduit for both 
water and sediment. In any river system, the active channel system evolves to handle the 
amounts of water that flow during frequently occurring events that are large enough to scour 
and shape channels. When rain delivers more water than the channels can handle, the river 
overflows its banks and is said to be in flood. Sediment movement complicates this picture by 
locally partly filling the channel system. When more sediment is delivered than the flow can 
move, the water leaves some sediment behind in the channel. The bed is raised, and so less 
water is needed to cause the river to overflow its banks. So much sediment can be left behind 
that the river sometimes creates a new channel to bypass a clogged portion of channel. 

Sediment is injected into the river system during storms, by landslides, debris flows, and 
bank collapse. The injections are at irregular intervals, and a single injection can be of almost 
any size, from something quickly and easily whisked away by the river in flood, to something 
much larger that may take many large floods to clear. Each sediment injection is moved 
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through the system entirely by river flow. The irregular injections create pulses or slugs of 
sediment which move through the system much more slowly than the pulses of water called 
floods. The speed of movement of any particular slug through the river system depends on 
details of the path it takes (particularly in a widely braided river), on the frequency and size 
of water flows that can move sediment, and on the slope of the bed the slug creates as it 
moves. As a slug of sediment passes a particular reach of the river, it is seen as aggradation 
as the slug approaches the reach, and degradation as it leaves. That is, rises and falls in river 
bed level at any spot indicate the passage of slugs of sediment. The falls in bed level occur 
when locally the river is carrying less sediment than it is capable of carrying, and it is able 
pick up new sediment by eroding its bed and banks. 

In the Waiho-Callery River system, large slugs of sediment are generated in several ways. 
Some are flushed out from beneath the Franz Josef Glacier by changes in the subglacial 
drainage (accompanied by ice bursts or ice floods). Some occur when large sections of high 
terraces of gravel collapse, and some when debris avalanches fall into the Callery River 
gorge, or into any of the steep tributaries. These happen mostly in storms: the larger the storm 
(and flood), the larger and more numerous are the likely slugs. Larger slugs of sediment also 
are formed when faster-moving slugs catch up with slower-moving ones during their passage 
through the river system. 

The maximum height of a gravel slug that can pass through a particular river reach is tightly 
limited by the height of the channel banks, because these limit the height at which the water 
spills out and no longer is available to move sediment along the channel. This limit to the 
height of the water surface, in turn limits the height to which the river can build its bed by 
piling up sediment. 

The Waiho-Callery system is dynamic: huge quantities of sediment are continually eroded 
from uplifting mountains and deposited on the flatter land at the mountain front on the 
alluvial fan. The toe of the fan currently is maintained in a constant position and elevation by 
the sea. Over thousands of years, the movement of water and sediment have adjusted the 
slope of the fan surface so that the fluctuating supply of water is able to carry the fluctuating 
supply of sediment to the sea. The occasional oversupplies of sediment (such as might result 
from severe ground shaking during fault movements or from severe storms) cause short-term 
steepening, and hence aggradation, of the fan surface; this steeper slope allows the available 
water to flow more rapidly and move the sediment, and when the sediment is gone, the slope 
reverts to normal. Similarly, sediment-supply deficits, or water surpluses, cause episodes of 
degradation (and lessen the slope). In the long term, the system achieves an equilibrium: the 
fan surface is episodically changing, with local, temporary episodes of aggradation and 
degradation as the river moves constantly across the fan, eroding the existing surface and 
replacing it with fresh sediment, on a time scale of a thousand years or so. 

The township of Franz Josef Glacier is sited at the head of the Waiho River alluvial fan, and 
straddles the most recent trace of the Alpine Fault movement. The community has developed 
in this location because of the site's historical safety from flooding, and proximity to a 
relatively safe, short and stable river crossing. 

The principal area that has been the settled is the gently-sloping surfaces of alluvial fans, 
deposited where steep tributary streams issue from narrow confining valleys onto a wide, 
relatively flat valley floor - the Waiho Flats. The fans have been deposited on the floor of the 
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glacially scoured Waiho valley since glacier ice receded from the mountain front about 
10,000 years ago. The reach of the Waiho causing severe difficulties for the community is at 
the fan head, and includes the section of riverbed between the highway bridge and the 
confluence of the Callery and Waiho rivers (referred to in this report as the “transfer reach”), 
where aggradation and associated bank scour are occurring. The elevation of this reach is 
determined by the water and sediment inputs to the fan from upstream, together with the 
position and elevation of the fan toe. The latter is the ocean and is fixed in the long term. 
Before the land was cleared for settlement and agriculture, the fan surface oscillated about a 
grade, with a long-term equilibrium between the water and sediment inputs. Two other 
factors influence the behaviour of the Waiho-Callery fan: periodic uplift of the mountain 
front and fan head at the Alpine Fault, and river-training works erected over the past 60 or so 
years. 

We now discuss the components of the system in turn; starting with the catchments that 
supply water and sediment, then looking at the fan system starting at the sea and working 
back up to the fan head. This gives a background to developing an understanding of the fan-
head behaviour which has caused the river-management problems in recent decades. 

 

3.3 The upper Waiho catchment 

3.3.1 Description 

The catchment of the upper Waiho River is 7700 hectares in area, 1300 hectares (18%) of 
which are covered by the Franz Josef Glacier and its tributary glaciers. The Franz Josef 
Glacier descends to an altitude of about 200 metres and to within 5 kilometres of the Waiho-
Callery confluence. Only about 1550 hectares of the catchment area contributes water and 
sediment directly to the river, while the remaining 5150 hectares deliver water and sediment 
to the glacier drainage system. 

The rock-walled valley of the Waiho is relatively wide (about 500 metres) for 2.5 kilometres 
downstream from the glacier terminus; this area stores much of the sediment delivered by the 
subglacial drainage system, and further reduces the catchment area delivering water and 
sediment directly to the river. The river is usually incised in the upper part of this reach, but 
changes course frequently as sediment is delivered to it from beneath the Franz Josef Glacier. 
Further downstream, the river is often braided. 

The final 2.5 kilometres of the course of the upper Waiho to the Callery confluence runs 
through a low gorge in moraine deposits, and here the river is mostly in a single channel. 

The Waiho River is always coloured grey by substantial quantities of fine glacial flour. 

 

3.3.2 Water and Sediment Delivery 

Precipitation can occur as rain up to an altitude of 3,500 metres, but in cold weather, much of 
the precipitation falls as snow above about 1000 metres. Most of the runoff generated by rain 
at high altitudes and by melting of snow and ice enters glacial drainage systems such as that 
of the Franz Josef Glacier. Little is known about these drainage systems, but runoff over the 
glacier surface is insignificant compared with water movement within and under the glaciers. 
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Sediment is generated both by erosion by glacial plucking and grinding at the base of the 
glacier, and by subaerial erosion, including rockfalls and large landslides. Most of the debris 
produced by subaerial erosion falls onto the glacier and is incorporated into the glacial 
system. The subglacial drainage system is the source of all of the sediment delivered to the 
river flowing from beneath the glacier. Little is known about sediment transfer within the 
glacier. However, the drainage system in and under the glacier flows in pressurised conduits 
rather than in open channels. The ability of a given flow of water to transport sediment is 
much greater in such a system. 

The glacier is presently advancing, and brings more sediment to the Waiho than the river can 
remove, with the result that the upper valley is rapidly aggrading. For example, it aggraded 
10 metres in a large flood in December 1965, and about 3 metres in a moderate storm in 
February 1997. Temporary blockage or changes in the subglacial drainage system create 
floods that expel large pulses of sediment: one such event in December 1995 deposited about 
250,000 cubic metres of sediment, much of it as very large boulders, in the upper Waiho 
valley (Turnbull, 1998). Such floods are known as "Jokullhlaups" (an Icelandic term) or 
"glacier bursts". These very large water flows last for a short time as the subglacial drainage 
depressurises. They contain huge quantities of broken ice, and invariably much sediment. 

Sediment delivery along the Waiho to the Callery confluence takes place at the transport 
capacity of the Waiho River; this is limited by the flow rate and slope of the river. During the 
periods when the glacier has been retreating, the floor of the upper valley has usually been 
incised, indicating a much lower rate of sediment supply from the glacier. Because of the 
sediment storage capacity of the upper Waiho valley, however, the sediment supply to the 
confluence with the Callery responds only slowly to sediment delivery from the glacier. 

 

3.4 The Callery catchment 

3.4.1 Description 

The Callery catchment is larger (9200 hectares) than the Waiho, and contains a larger area of 
ice (1700 hectares; about 18%). The three major glaciers (Callery, Burton and Spencer), 
however, terminate above about 1000 metres elevation. About 3000 hectares of the catchment 
delivers water and sediment directly to the river; and thus the effect of glaciers on the 
delivery of water and sediment is less than in the Waiho catchment. A small lake in the upper 
Callery prevents the transport of coarse sediment from the area above it. 

The main feature of the Callery is the 10-kilometre long Callery Gorge which forms the 
lower reach of the catchment. This has long (up to 2 000 metres), steep (up to a grade of 
60%) sides, and the river for much of the reach runs in a narrow, deeply incised, rock-bound 
channel. The average bed slope of this reach is about 2.5%. 

3.4.2 Water and Sediment Delivery 

In the Callery catchment, a much greater proportion of the water and sediment generated by 
storms is delivered directly to the river than is the case in the Waiho. The area above the 
gorge delivers water and sediment to the river in much the same way as for the upper Waiho. 

Runoff and sediment move very rapidly through the Callery Gorge from a 3000-hectare area. 
Very little sediment can be stored in it because of the gorge is steep and narrow. Any 
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temporary accumulation of sediment in the channel causes local steepening of the water 
surface and is moved through the gorge as a coherent slug; these tend to accumulate into 
larger, moving sediment bodies as they migrate downstream. Thus sediment can be delivered 
from the lower end of the gorge into the Waiho at a very high rate during some floods, while 
during other floods with similar water flows, the sediment-delivery rate may be much lower. 

The Callery Gorge is so narrow that it can easily be blocked by a landslide large enough to 
form a temporary dam. A landslide in the 1930s blocked the river for about a day. The dam 
failed when it was overtopped, and released a surge of water and sediment down the gorge to 
the confluence with the Waiho. Such dam-break floods are a significant hazard on the Waiho 
fan: we can expect at least one large landslide of about a million cubic metres to occur each 
50 years (in addition to those generated by earthquakes on the Alpine Fault). Landslides this 
big are capable of holding back enough water to generate flood discharges of thousands of 
cubic metres per second, compared with the estimated "hundred-year" flood of about 2000 
cubic metres per second in the combined Callery-Waiho system (Davies and Scott, 1997). 

 

3.5 Other catchments 

The Tatare River catchment has an area of approximately 3000 hectares and is largely 
unglaciated. It is physiographically similar to the lower Callery, being deeply gorged. It 
delivers both water and sediment very rapidly to its fan. 

The catchment of Docherty's Creek is about 1500 hectares in area and is of lower relief than 
the other main watersheds. 

Both of these catchments are capable of being blocked by large landslides, but there is no 
historical record of this happening in either river. 

 

3.6 The Lower Fan (the Waiho Flats) 

The area of flat land between Canavan's Knob and the sea is known as the Waiho Flats. 

3.6.1 Description 

The lower fan has little topographic variation; the valley is an infilled glacial valley, and 
channels of the Waiho River have flowed over all points in the valley over the past few 
centuries. At present, the Waiho River follows the north-eastern edge of the valley, this being 
a slight topographic low. Docherty's Creek follows the other side of the valley before 
crossing to join the Waiho six kilometres from the sea. 

Where the Waiho crosses the Waiho Loop it is redirected to the right by Eatwell's (formerly 
Milton's) stopbank, and flows down a steeper sub-fan to the north-east side of the valley. It is 
there joined by the Tatare which has cut through the Loop farther east. 

 

3.6.2 Processes 

The base level of the lower fan is fixed by sea level: the fan extends beyond the moraine 
headlands only for short periods following floods that quickly build a delta into the sea before 



 
 

Institute of Geological & Nuclear Sciences  16 Hazard assessment for Franz Josef Glacier 

the sediment is whipped away by aggressive marine erosion and the northerly along-shore 
drift. The extent to which the delta builds between episodes of marine erosion is a clear 
indication of the prodigious quantity of gravel that the Waiho is able to carry to the sea. 

Sea level has been more-or-less constant for the last six thousand years. It is unlikely that the 
lower fan has aggraded or degraded much since the fan accumulated to span the gap between 
the headlands. In effect, all the sediment delivered to the lower fan is carried to the sea and 
disappears from the system. This implies that the whole fan system, including the upper fan, 
has been in dynamic equilibrium for some time - probably for thousands of years. 

 

3.7 The Upper Fan 

The upper fan is the reach from the lower end of the transfer reach to the Waiho Loop. 

3.7.1 Description 

In this reach the active river bed widens and the river switches its course frequently during 
high flows. Along the true left (south) bank, the river is flanked by control banks to 
downstream of Canavan's Knob. It is constrained to flow due north around the downstream 
side of the Waiho Loop by Eatwell’s stopbank. On the true right (north) bank, the river is 
discouraged from widening by banks along the frontage of the heliport area (formerly the 
airstrip), Franz Josef Glacier Hotel and the oxidation ponds. Downstream of the oxidation 
ponds the river is presently widening rapidly. 

 

3.7.2 Processes 

This part of the system behaves as a typical alluvial fan (Zarn and Davies, 1994), but with its 
base level fixed by the behaviour of the lower fan. The river channels vary their positions on 
the fan surface rapidly and unpredictably, though there is evidence for an underlying 
oscillation, from one side of the fan to the other. At present the river is prevented from re-
occupying the fan surface from the Holiday Park to Docherty's Creek by stopbanks along the 
south-west side of the river from the Callery confluence to Canavan's Knob. Until the 
present, the Waiho has been prevented from breaking out into the Tatare because the latter's 
fan crest was at a higher level than that of the Waiho. The Tatare has cut into its fan and is no 
longer building up the fan surface. The Waiho fan surface has now reached the same 
elevation as the Tatare fan crest and is rapidly encroaching on it. The break-out of the Waiho 
into the lower Tatare may occur in the near future. 

Confinement of the river bed to the central part of the fan has resulted in a general increase in 
aggradation over past decades. The river bed thus is now above the level of the ground 
outside the stopbanks over most of the upper fan, and at or above the limit of aggradation in 
recent centuries as indicated by the river's encroachment onto the surface of the Tatare Fan 
for the first time, and its burial of a terrace dated to about 1850 by Mosley (1983). 

 

3.8 The Transfer Reach 

Between the Callery-Waiho confluence and the fan head of the Waiho is a short (0.5 - 1.0 
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kilometres) reach in which the river is confined by high terraces on the north and by the 
glacier access road on the south. Since this reach is at present unable to widen easily, and 
since its behaviour causes some of the most urgent hazards, it is treated separately from the 
Waiho fan, although in geomorphic terms the distinction does not exist. 

3.8.1 Description 

This is a short, straight reach of alluvial river that receives water and sediment from the 
Callery and the upper Waiho. Much of the uppermost reach is occupied by a low fan that the 
Callery has built at the point where it emerges from its gorge; this has recently forced the 
Waiho against its western bank at the top of the reach. There is a lot of relief across the river 
bed (sometimes up to four metres), and it is noticeable that the coarsest sediments are found 
towards the north bank and emanate from the Callery gorge. The whole length of the west 
bank of the reach is protected with stub groynes and a raised gravel bank; the east bank has a 
few stub groynes to prevent erosion of the high terrace, and high-standard rock armouring 
along the downstream half of this bank. Half way along this reach is the SH 6 bridge, the 
abutments of which reduce the river width somewhat. 

3.8.2 Water and Sediment Motion 

Water and sediment are supplied to this reach by the Callery and Waiho Rivers. 

Flow of the Waiho into the transfer reach increases quickly following the onset of rain. Its 
sediment contribution is determined by the water flow rate and the river slope at the 
confluence. Flow from the Callery rises faster following the onset of rain, and the peak flow 
rate may be much greater than that from the Waiho. Its sediment contribution will also vary 
with water flow and slope, but given the much steeper slope of the Callery, the sediment 
concentration will be higher during high flows. In addition, the arrival of a "slug" or "pulse" 
of sediment at the exit from the Callery Gorge will result in a very large sediment delivery. 

The supply of water and sediment to the transfer reach varies considerably during the course 
of a storm, and between storms, depending on events in the upstream catchments. In general, 
the flow rates and water volumes, as well as sediment input rates and volumes, will be higher 
from the Callery. It appears unlikely, therefore, that storm rainfall can be used reliably to 
predict river-bed behaviour in the system. Recent experience bears this out. In May 1997 a 
storm of 387 mm of rain in one day caused minor changes in the area immediately below the 
Franz Josef Glacier terminus, but had no effect elsewhere, whereas in February 1998 a storm 
with 195 mm in one day caused several metres of aggradation in the upper valley, significant 
aggradation in the Waiho reach above the confluence (a most unusual occurrence) and rapid 
sediment buildup in the transfer reach. 

Transfer of sediment through this section depends on the slope of the reach. This is 
determined by the river bed levels at the ends of the reach. At present the slope is lower than 
that upstream and downstream, due to aggradation downstream; however aggradation of the 
Callery fan might soon change this. At present, the reach is aggrading, indicating inadequacy 
of sediment transport capacity through the reach. The reach has also become wide enough for 
channels to meander during high flows, lowering the channel gradient and increasing the 
probability of bank erosion. In order to induce degradation in this reach, either the sediment 
inputs from the Callery and Waiho have to decrease, or the course of the Waiho on the fan 
must change in a way that causes degradation to migrate headwards into the reach, or both. 
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3.10 Past Behaviour of the Callery-Waiho Fan System 

3.10.1 Ancient history 

As recently as 16,000 to 18,000 years ago, the glaciers of the southwestern Southern Alps 
extended beyond the present coastline. A coalesced Waiho-Callery-Tatare Glacier carved a 
broad, deep valley across the coastal lowland now occupied by the Waiho Flats. As this 
glacier retreated, the river draining from it began to fill in the valley with sediment. It seems 
likely that the infilling was rapid enough that, as the glacier retreated from the coast and sea 
level rose with the worldwide melting of glaciers, the valley was always filled with enough 
sediment to prevent incursion of the sea into the valley (that is, the valley probably never 
became a fiord - as did the Haast valley). 

By about 13,000 years ago, the Callery-Waiho Glacier had retreated to behind Canavan's 
Knob and the knob became forested. The glacier then advanced again, destroying the forest 
and extending beyond the mountain front as a lobe on the coastal lowland. The edge of the 
glacier lobe is outlined by the Waiho Loop, which is a glacier moraine deposit. When the 
glacier receded from the Loop, the glacier-fed Waiho and Tatare rivers began delivering 
sediment to the upper fan area. At this time, ground level was at least 100 metres lower than 
at present, and sea level was much lower. On its western side, the Loop probably extended 
farther to the south than at present, but this is now buried or eroded. The isolated hillock 
known as Rata Knoll was once part of the formerly more continuous Waiho Loop. 

Because the Loop then formed a more complete obstacle, the Tatare (probably assisted by the 
Waiho in the early stages) rapidly filled in the area upstream of the Loop. This area soon 
became higher than the Waiho fan in order that it could drain west to the Waiho. The Tatare 
eventually built up its fan to the level of a low point of the Loop; it then cut through this 
about a thousand years ago, forming a substantial waterfall on the downstream side, and 
rapidly cut the gap down in stages. The downcutting caused the Tatare to become incised into 
its fan. The establishment of a new course through the Loop stopped further aggradation of 
the upper Tatare fan surface. It is likely that prior to the cut through the Loop, the Loop was 
filled in almost entirely by the Tatare fan. There is no evidence that the Waiho has ever 
flowed into the Tatare above the Loop (except recently during small overflows in high flood). 

While the Tatare was infilling the Loop, the Waiho was aggrading its fan farther towards the 
outer sea coast, keeping pace with the rising sea until sea level stabilised about 6000 years 
ago. This long-term aggradation ceased once sea level stopped rising. That the fan surface 
has changed little in level for some time is shown by the presence of shallowly buried old 
soils close the south end of the Waiho Loop on either side of the Waiho. 

It is likely that for much of the last 10,000 years the Waiho flowed south of Rata Knoll; the 
Tatare fan extended across to the Knoll and blocked north-easterly migration of the Waiho. 
For much of this time, the Waiho has generally alternated between flowing on either side of 
Canavan's Knob, and has buried or eroded any former extent of the Loop moraine. 

At some relatively recent time, however, and possibly as a result of a large sediment input or 
fault movement (or both) causing unusual aggradation of the upper fan, the Waiho channel 
shifted to the east of Canavan's Knob and onto the Tatare fan surface; where it found an exit 
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from the Loop through a low point between Rata Knoll and the present end of the Waiho 
Loop. This event may have induced a nick-point and caused incision of the Waiho channel 
back through the system, much as the Tatare did when it cut its present exit through the Loop. 

Since the Waiho Loop formed about 13,000 years ago, there probably have been more than 
fifty uplift movements on the Alpine Fault, amounting in total to perhaps 150 metres of uplift 
of the ground south-east of the fault. Each of these movements would have had a complex 
effect on the river system. Massive amounts of sediment would tumble into the Callery and 
Waiho from earthquake-induced landslides and other erosion. On the other hand, fault 
movement would also induce substantial degradation of the Callery-Waiho system east of the 
fault. The immediate impact of fault movement on the transfer reach would be to uplift it, 
causing incision to extend upstream. Very soon, however, a massive wave of sediment would 
come down both the Callery and the Waiho, causing massive aggradation in the transfer 
reach and the development of a steep sub-fan on top of the upper fan area. Once the large 
volume of earthquake-induced sediment had largely moved downriver, incision of the 
aggradation surfaces would begin, eroding downward within the transfer reach to a very low 
level due to the uplift that reach had experienced. The last time that this sequence was 
initiated appears to have been in 1717AD. An understanding of the process rates in the 
response sequence of the catchment-fan system to episodic uplift is not yet available, and 
awaits further investigation. 

 

3.10.2 Modern history 

The earliest known descriptions of the Waiho area date from the mid-1800s when Julius von 
Haast visited the glacier. Early photographs of the area date from about 1870. A few written 
records of the river system come from gold-mining tales of the 1880s (Hewitt 1965). Since 
then, reports have been more frequent, as more tourists began to visit the area and hotels and 
roads became established. However, the exact behaviour of the river system cannot be 
reconstructed accurately prior to the first aerial photographs in 1948. 

From the mid 1800s, and until the mid 1890s, the Waiho River below the Callery confluence 
was deeply incised - so much so that the locality and township was known as Waiho Gorge. 
Mosley (1983) noted a "high" terrace on the true left of the river just above the SH 6 bridge 
that was covered by vegetation 110-120 years old (estimated by Dr Peter Wardle). Dr Mosley 
attributed this terrace to an aggradation event in the river in the 1850s. This terrace and its 
plant cover have been lost in the recent aggradation of the river channel, so its age can not be 
verified. Downstream, the surface on which the earliest hotel (and later the earliest airstrip) 
was built, was the active channel when the area was first visited in the 1860s. 

Peter Graham reports in his autobiography (Hewitt 1965) that miners found the richest gold 
deposits in the Waiho Gorge at the contact between recent river sediments and the underlying 
moraine material at the base of the Waiho channel, indicating that the river then was incised 
to its maximum depth since glaciers had passed through. It is not known if or to what extent 
miners might have encouraged the Waiho to degrade below its natural level of the time when 
gold was first discovered. Their ability to affect long-term changes in the bed level appear to 
have been limited, because Peter Graham reports that the bed rose in an “Old Man” flood in 
the mid 1890s, and the moraine interface was never again accessible to miners. A photograph 
of the first car fording the Waiho below a footbridge in the 1910s shows a deeply incised 
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channel with huge boulders, but a rock gabion in place to control the location of the river 
crossing, indicating significant sediment movement and channel instability. Photographs of 
the construction of the first road bridge in 1927 show that the deeply incised channel with 
huge boulders persisted for many decades. At about this time, however, there are also reports 
indicating that the river was aggrading. For example, the original hotel was moved from its 
low terrace site (the former "airstrip" terrace) because of flooding. In the 1930s there was 
concern that sediment coming down the river was causing problems (flooding of the airstrip). 
The first "permanent" Waiho river-control works were erected in the 1930s to keep the river 
off this terrace. 

Air photos of 1948 show a bed with large boulders prominent in the Waiho River channel 
above the highway bridge, but they also show active bars of recent gravel. Bars are absent 
from 1927 and 1930s photos. This evidence indicates that aggradation was well under way by 
1948, having begun much earlier; but it was to be another 20 years before it began to be a 
problem at the bridge. The lower terraces downstream look as if they were being increasingly 
used by the river during floods, and there are bank protection works visible on the true right 
bank opposite the Holiday Park site and on the true left bank immediately upstream of 
Canavan's Knob. It was thought (Mosley 1983) that the proglacial lake that existed in the 
Waiho valley in the 1930s and 1940s had a significant effect in modulating aggradation at the 
bridge. Recognition of aggradation on the upper fan in the 1890s and 1930s, and appreciation 
that the Callery probably supplies much more than half of the sediment, however, reduces 
this emphasis.  

The upper Waiho River area has been visited almost daily since before the turn of the 20th 
century, and so its behaviour is well observed and easily documented. The Callery on the 
other hand is remote and rarely visited. Its behaviour is largely unknown. It is a mistake to 
confuse lack of information with lack of importance, or lack of effect. 

Since 1948, aggradation of the upper fan has continued. Each set of air photos shows the 
active bed wider than the previous one (and also more and more control banks to contain the 
river). The contrast between the river planform in 1948 and that fifty years later is 
astonishing. The upper fan surface has now aggraded to the extent that the Waiho could soon 
easily break into the Tatare for the first time ever. 

It is likely that the recent behaviour of the river on its upper fan has been greatly affected by 
control works. In the absence of control, the expected behaviour of the river would be to 
oscillate between deep degradation, as in the late 1880s, perhaps in response to fault 
movement, and aggradation to the level of the "high" terrace - that is, to a level somewhat 
below its present level. We know that the 1880s incision upstream of the bridge has never 
been exceeded, because the moraine below the base of the recent gravels has never again 
been exposed. The "high" terrace level has never been exceeded naturally by aggradation 
either because that would allow a break-out to the Tatare, which has never occurred. 

During the periods between fault movements, one would expect the transfer reach and upper 
fan to show behaviour resulting from recovery from the uplift event and also from the 
occurrence of large storms (and also the occasional landslide dam-break flood from the 
Callery Gorge as occurred in the 1930s). This behaviour would be an oscillation between 
episodes of mild aggradation and degradation with up-to-4 metres change in bed level. 
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In summary, the behaviour of the transfer reach and upper fan results from the influence of 
water and sediment inputs from upstream and the fixed position of the fan toe. The response 
of the system to tectonic uplift every few centuries is unclear and may also be a factor in its 
present behaviour. 

 

4.0 CONTROL WORKS 

4.1 Right Bank 

4.1.1 Spur groynes between the Callery Junction and SH 6 Bridge 

Works here include two short spur groynes faced with interlocked heavy rock. The aim of 
these groynes is to deflect river flow from the base of the high terrace and so prevent further 
scour and loss of terrace edge, where this could threaten the right-bank (northern) approach 
to the SH 6 bridge and the Waiho River frontage of the Franz Josef Glacier township. The 
works are of a high standard, and have not suffered damage since installation in 1996. They 
do not extend the full length of the high terrace edge to the Callery junction and so do not 
stop the river from gaining large quantities of sediment locally. Sediment eroded by 
undercutting of the high terrace here contributes directly to further aggradation of the river 
bed both here and further down stream. Continued aggradation will negate the protection 
afforded by these works. There is potential for these groynes to be outflanked by erosion in 
the long term. 

 

4.1.2 Scour protection for the SH 6 Bridge approach and the Church 

The 280 metre length of bank from upstream of the SH 6 bridge to the downstream edge of 
the terrace upon which the Anglican Church is sited is protected by an embankment (15,200 
cubic metres) faced with interlocked heavy rock (18,887 tonnes). The rock is deeply trenched 
(originally 5 metres) in the river bed to accommodate future scour. The aim of the bank is to 
protect the bridge approach and DoC and church property from future scour and erosion, and 
so protect the remainder of the township area. The works here are to high standard, and have 
not suffered damage since they were installed in 1996. Continued aggradation of the river bed 
in this reach will ultimately negate the protection, but there is space for further additions to 
the height of the bank, which does not yet reach the full height of the terrace edge. 

 

4.1.3 Heliport (formerly Airstrip) stopbank 

This section of the right bank of the Waiho River has the longest history of river-control 
works in the area. The former airstrip required protection from episodic flooding from the 
1930s onwards. This is not surprising because this area was the active river channel in the 
1860s, and the original Waiho Gorge Hotel had to be moved from this area in 1911 because 
of the repeated threat of flooding.  

At various times there has been a stopbank up to a kilometre long along this section of bank 
to "prevent" the river from overflowing onto the former airstrip, where it also threatens the 
western frontage of the village, the Franz Josef Glacier Hotel and the oxidation ponds. The 
efficacy of the protection can be shown by the frequency with which the bank was been 
damaged : between 1968 and 1998, it was breached or damaged on average every 3 years, 
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although it has been designed and built to contain floods of much larger return period. The 
airstrip now is abandoned and destroyed. 

Because control works have been here longer than at any other site in the upper fan area, and 
because they have not performed as intended according to their design, we strongly suspect 
that these works initiated the continuing aggradation problem on the upper fan. Certainly, this 
stopbank has been a key player in the developing aggradation problem: without this stopbank 
in place, the river bed would not have built to its current level beneath the SH 6 bridge or 
beside the Holiday Park area in the last 60 years. 

 

4.1.4 Stopbanks protecting the Franz Josef Glacier Hotel and Oxidation Ponds 

Local residents warned of the possible dangers of erosion of this area at the time the site was 
proposed for development as a hotel in 1957. They warned that its frontage to an 
"abandoned" Waiho channel had been severely eroded in about 1911 and again about 1937. 
Their warnings were ignored for 10 years, but the threat was officially recognised in 1968 
when the Airstrip protection works were upgraded to protect the hotel site. In 1985, fill and 
rock rip rap were required to directly protect the frontage of the Franz Josef Glacier Hotel 
and oxidation ponds.  

Since 1985, there has been river-bed aggradation along this frontage. Aggradation is now 
such that, on 23 April 1998, water from the Waiho River during normal flow was passing 
through the bank (probably via unfloodgated stormwater outflows) and ponding in drainage 
depressions in the hotel lawn. Some of this grey, silt-laden Waiho water was draining back to 
the Waiho north of the oxidation ponds, indicating a potential for the bank to be outflanked.  

We assessed the standard of protection offered by this bank to be good enough to protect 
structures behind it from scour in events up to about 5-year recurrence interval, but it will not 
prevent flooding of the hotel site during freshes while most of the flow is in this direction. 
The oxidation ponds are unprotected from scour of their northern flanks if ever much water 
leaks through the banks along the hotel frontage. 

 

4.1.5 The unprotected frontage to the Greens' property 

There are no protection works fronting the Greens' property to the north and west of the 
oxidation ponds. The lie of the land in this area is due to ancient deposition of the Tatare 
River fan, and so in earlier times there has been no likelihood of the Waiho River taking this 
route onto other properties. Over the last 60 years, every attempt by the river to break out into 
new courses in other directions has been strongly opposed with river-control works. The river 
has been repeatedly directed against this bank by spur groynes deflecting the river away from 
other banks. From 1965 to 1998, up to 250 metres width was lost from about 2 kilometres of 
river frontage on this property (about 90% of its former area). Loss of much of the remaining 
farm area, and a break-out of the Waiho River through the adjacent farm to the Tatare River 
is now an immediate prospect. On 23 April 1998, continuing bank scour was occurring at 
normal flow because a major channel of the river was adjacent to this bank. The free-board of 
the bank above normal flow was a mere 30 centimetres.  

At the bed levels and flow configuration of late April 1998, floodwater from the Waiho River 
could enter the Tatare River above its gorge through the Waiho Loop during flows as small 
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as are likely to occur several times each year. When these flows initiate scour in their fall to 
the Tatare, the Waiho River will quickly adopt a new, and potentially irreversible, course 
change of far-reaching consequences. 

 

4.2 Left Bank 

4.2.1 The raised glacier access road and stopbank upstream of the SH 6 Bridge 

By April of 1985 continued aggradation and bank scour of the river channel adjacent to the 
glacier access road above the SH 6 bridge made it inevitable that the road be raised. This 
work was completed in 1988, when the raised road was reinforced on the river side with 
about 9000 tonnes of rock rip rap. The road was raised further in 1996 and again in 1998. 
There is a proposal that it, and the bridge, be raised a further five metres. 

 

4.2.2 The Holiday Park Stopbank 

River-control works first became necessary along the river frontage of the Holiday Park in 
1978. The works were enlarged or repaired in 1980, 1991, 1996, and 1998 in response to 
continuing aggradation of the river. Part of this bank is armoured with heavy rock: the rest is 
protected from scour by stub groynes. 

 

4.2.3 SH 6 stopbank between the Holiday Park and Canavan's Knob 

The first works here were built immediately upstream of Canavan's Knob not long before 
1948. Stopbanks were built to stop the river breaking out along the highway. A larger, longer 
bank was in place in 1965 to inhibit erosion of State Highway 6. This bank was breached in 
the late 1970s, and in March 1982, when some floodwater spilled to Docherty's Creek. 
Subsequently the river has significantly aggraded adjacent to this bank, so that the river bed 
now stands at or above the road level along this reach. In 1998, in response to floodwater 
spilling around the end of the Holiday Park bank, the SH 6 bank was extended south to 
overlap with the Holiday Park bank (while still allowing outflow of stormwater drainage). At 
the same time, the bank was raised to allow for aggradation of the river bed. As now 
constructed, there is no road verge between SH 6 and the stopbank wall along some sections. 
The outer wall is at the angle of repose for tipped gravel, and loose gravel can roll onto the 
highway. On its inside, the bank is protected from scour by stub groynes. 

 

4.2.4 Stopbank protecting the upper Waiho Flats at Canavan's Knob 

A short section of stopbank is present downstream of Canavan's Knob. Its high standard of 
construction dates it to the mid 1980s. It ties to a low terrace at its upstream end. It appears to 
be intended to inhibit erosion of the continuation of the low terrace downstream. It acts to 
deflect flow away from the left bank (towards the unprotected right bank). 

When inspected in April 1998, significant aggradation had occurred at the upstream end of 
the bank. During a recent (1998) flood flow, a small portion of the flow against Canavan's 
Knob had outflanked the bank because aggradation upstream had overwhelmed the low 
terrace to which the bank was tied at its upstream end. This water flowed parallel to the 
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stopbank to re-enter the Waiho above Rata Knoll. It now is possible for normal flows of the 
Waiho to outflank this stopbank should the river again return to this section of the fan. In 
future floods, this could lead to further loss of land between Canavan's Knob and Rata Knoll. 

 

4.2.5 Eatwell's (Milton's) Stopbank 

The Eatwell's (formerly Milton's) stopbank prevents break-outs of the Waiho River 
immediately downstream of Rata Knoll across farmland and the Waiho Flats airstrip into 
Docherty's Creek. The first works of about 950 metres in length were not in place at the time 
of the first aerial photography in 1948, but were well established at the time of aerial 
photography in 1965. The history of damage prior to 1982 is not known in detail, but damage 
is likely to have been considerable, because the bank destroyed in 1982 was curved and 
significantly narrowed the river channel, whereas the bank in place in 1965 was straight and 
approximately on line with the present bank. The stopbank was overwhelmed and washed 
away in the flood of 11/12 March 1982. When the bank was reinstated, it was set back 100 
metres to allow a greater river width, and the radius of curvature was increased from 230 to 
350 metres to lessen the effect of scour. The bank height was also raised by a metre to 
prevent overtopping. The river face of the bank was faced with large rocks to inhibit scour. 

The Eatwell's bank was in sound condition in April 1998, and does not appear to have been 
damaged significantly since it was reinstated after 1982. The bank is a significant constriction 
on flood flows, however, so that in large floods, water is impounded above the Waiho Loop. 
This in turn inhibits the movement of gravel into the reach, causing aggradation up stream. 

 

4.2.6 Other Stopbanks 

In the lowest reaches of the Waiho River, within a few kilometres of the sea, there are other 
stopbanks to inhibit bank erosion (and loss of farm and forest land) and to keep Docherty's 
Creek and the Waiho River within their lower channels. The adequacy of these banks was not 
considered in this study. 

 

4.3 Docherty's Creek Works 

We did not closely inspect all the control works along Docherty's Creek, but none is intended 
to contain flows such as will be experienced if the Waiho River breaks out into this channel. 

 

4.4 Effect of River Control Works 

The Waiho has an intrinsic tendency to shift laterally across its fan from time to time through 
a combination of local aggradation and bank erosion: to prevent this occurring requires very 
robust control works. Control works in the form of bank-erosion protection and stopbanks, 
designed to prevent widening of the river bed, have been used on the Waiho system for six 
decades. There have been rare spectacular failures: a long central bank erected in 1980 to 
move the river into a narrow bed against the south-west bank downstream of the motor camp 
was destroyed in 1984, and no trace of it now remains. When the nature of the river is 
considered, the works have provided the community with a useful measure of protection from 



 
 

Institute of Geological & Nuclear Sciences  25 Hazard assessment for Franz Josef Glacier 

the threat of flooding, but there is an underlying escalating trend in the area threatened by 
severe flood damage: this we attribute to presence of the works themselves for reasons 
discussed below. 

Preventing the lateral movement of the river has led to changes in its behaviour: these 
changes are those to be expected from principles of fluvial geomorphology. The longitudinal 
section of the river from above the fan head to the coast (Figure 4.1) reveals two reaches 
where locally elevated riverbed replaces the otherwise smooth profile: in the vicinity of the 
end of the Loop and in the transfer reach. These are both places where the lateral movement 
of the river bed has been thwarted by control works - Eatwell's stopbank has been in place in 
some form for about 40 years, and there were bank-erosion-protection works in place below 
the bridge in the 1930s. More recently, increasingly robust control banks have been 
constructed to protect the bridge and airstrip, along the whole west side of the river from the 
Callery confluence to Canavan's Knob, and along the east bank to protect the Franz Josef 
Glacier Hotel and oxidation ponds. The result of these works has been to restrict the river to 
the same half to one kilometre wide area of bed for the last few decades, when its natural 
behaviour would have been to move to occupy different areas during this period. 

We believe that the control works have caused the long-term aggradation, because: 

• Large bed-level changes of about 4 metres are normal for the Waiho and had been 
occurring at least since the area was visited in about 1865. It follows that the river 
always has been passing very large quantities of sediment. The bed level did not start 
to rise consistently until about the 1930s. 

• Very few other south Westland rivers have shown such a consistent pattern of bed-
level rise since the 1930s. Those that do have rising bed levels, invariably have some 
form of control works in place, because control is needed to reduce damaging break 
outs across farmland, or to constrain water to pass under existing bridges which are 
costly to relocate or replace. Such control works in turn restrict the area where 
aggradation can occur, and so lead to more and larger control works. With time, this 
can lead a river to threaten areas of land that may not originally have been threatened.  

• The Fox River at Fox Glacier has shown no equivalent behaviour to the Waiho 
despite the similarities in behaviour of the Franz Josef and Fox Glaciers. The Fox 
River is sufficiently incised in its fan head that control measures have never been 
necessary to restrain the river in its channel. If climate change were the cause of the 
Waiho behaviour, we would expect to see similar behaviour occurring more widely. 

• The river formerly was in dynamic equilibrium which now has been disturbed by the 
training works, and it is now attempting to reach a new equilibrium, but is being 
thwarted by repeated stopbank modification. It is evident from community's response 
to the present river behaviour, that the new equlibrium profile in the transfer reach 
would be unacceptable to the community. 

• The consistent trend in bed-level rise in the Waiho River transfer reach and upper fan 
coincides in time and space with the construction of control works. The level of the 
crests of the stopbanks have always been raised to keep them above the flood level.  
The Waiho River bed has now reached elevations never before achieved on the fan. 
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• It is self-evident that if the control works were now to be built lower than the bed 
level, the active bed level would lower as a direct response. 

• It is known that break-outs of the Waiho River are caused by sediment slugs which 
raise the bed up to the height of the surrounding land. Without stopbanks, the river 
would break out into a new channel and so limit the buildup of bed level. 
Construction of stopbanks has raised the elevation to which slugs can build up the 
bed, and the bed level has risen accoringly. Therefore the river-control works must be 
considered to be the cause of the present level of aggradation. 

It is known that reducing the ability of a braided river to achieve the width it would naturally 
adopt will result in increased aggradation (Davies and Lee, 1988), and preliminary laboratory 
experiments suggest that this would also be the case with alluvial fans. 

Never-the-less, short-term aggradation episodes of up to 4 metres amplitude at the highway 
bridge are natural and normal in the Waiho River. It is the inability of the past control works 
to efficiently cope with these natural fluctuations which appear to have led to the present 
acutely serious river hazard.  

Control works do not have to lead to persistent aggradation: elsewhere in this report we 
discuss a future option of control which potentially could lead to problems associated with 
extreme degradation. There are many examples elsewhere where no marked changes in bed 
levels occur in association with protection works. 

 

5.0 HYDROLOGICAL HAZARDS 

5.1 Landslide Dam-break Flood 

Davies and Scott (1997) made a preliminary assessment of the possibility of floods caused by 
a landslide dam-break within the Callery Gorge. They concluded that such events were 
indeed possible, and reported a record of one such event in the 1930s. They also identified 
some potential landslide sites and estimated the size of the likely peak discharge from such 
events. Landslides of the order of one million cubic metres have the potential to generate 
peak discharges of the order of a thousand cubic metres per second. There is geomorphic 
evidence, in the form of landslide scars, that much larger landslides than this have occurred in 
the past. The Callery thus threatens the facilities along the Waiho with destruction. No 
effective protection works are feasible against the larger possible failures. 

Such events, especially the larger landslides, are likely to be generated in earthquakes, in 
which case their probability of occurrence may be similar to that of large earthquakes (a 10% 
probability of occurring within 5 years!). 

Independent of the earthquake event is the probability of a large landslide due to rainfall. 
Hovius et al. (1997) show that the probability of rainfall-generated landslides west of the 
Southern Alps follows a power law trend. Their data, gathered from aerial photographs, 
indicate that the probability of a one-million-cubic-metre (10 hectare area) landslide is about 
0.03 per year, or one every 30 years or so on average; a 50-million-cubic-metre landslide 
would occur on average every 500 years or so. This means that about 3 times per 100 years, a 
dam-break flood with flows of the order of a 1000 cubic metres per second can be expected 
to occur. The 1930s event reported seems to have been of this size. 
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5.2 Glacier Burst 

Glaciers like the Franz Josef have tunnels and cavities within the ice. Normally these do not 
flow full, but during heavy, prolonged rain they carry a large volume of water. If a blockage 
should occur, due either to ice-tunnel collapse, or sediment accumulation (for example in a 
section of tunnel sloping uphill), then high pressure can very rapidly build within the 
subglacial drainage system. The blockage can then blow out and then release a large volume 
of water very quickly, carrying with it a high concentration of sediment and much broken ice. 

Glacier bursts are a serious hazard in the upper valley; water overflowed Champness Rock to 
a height of about 10 metres during one minor burst in March 1998, and in the December 1995 
flood, 250 000 cubic metres of sediment was deposited very rapidly in the upper valley to 
form a deposit 5 metres deep and about 1 kilometre long. Anyone in the upper valley during 
such an event could easily be killed. An even larger event occurred in 1965. 

Large glacier bursts have been recorded from the Franz Josef Glacier, at intervals of a few 
years to tens of years. However, the glacier is now in the sixteenth year of an advance, and is 
advancing over the wide sediment-filled bed of the upper Waiho valley. This situation is 
occurring for the first time in the glacier's recorded history. It is therefore possible that the 
frequency and magnitude of glacier bursts in the future could differ from that in the past. It 
would be prudent to recognise, in management of access to the upper valley during heavy 
rain, that there is potential for flash floods carrying large quantities of sediment. 

The larger glacier bursts have been accompanied by aggradation in the transfer reach (e.g. in 
December 1965), but there is no information on the magnitude of river flows caused by them. 

 

5.3 Catchment erosion and sediment delivery 

On air photos of 1981, there are many more erosion scars in the headwaters of the Tatare and 
Callery catchments than were present in 1965. There are also substantial areas of sediment on 
the riverbeds in these two steep, narrow catchments in 1981 that were not there in 1965 and 
are not present today (aerial reconnaissance). This suggests that between 1965 and 1981 there 
was a large storm that mobilised a lot of hillslope sediment and delivered it to the stream 
channels. One possibility is a 3-day storm in March 1979 that produced 750 mm of rain at 
Franz Josef Glacier township. 

In 1965, the Tatare River flowed to the Waiho Loop as a narrow, sinuous meandering 
channel in its incised arroyo. By 1981, its sinuosity had decreased markedly and it was much 
wider; and by 1985 it was very braided and had been laterally unstable for some time. Today 
the Tatare River is still braided but its bed is narrower and it appears to be incising itself into 
recent deposits. The Tatare River has thus responded to a severe erosion event by an 
aggradation-degradation episode within a 20-year period. 

It is likely that the Callery and Waiho Rivers also received a major injection of sediment 
from the 1979 storm, and responded similarly. Hence some of the aggradation in the transfer 
reach and upper fan of the Waiho River over the last two decades is probably due to 
increased sediment input from the Callery and Waiho headwaters. 



 
 

Institute of Geological & Nuclear Sciences  28 Hazard assessment for Franz Josef Glacier 

 

5.4 Flooding 

The basic cause of flood hazards is human behaviour - we occupy land over which the river, 
as part of its natural behaviour, tends to flow from time to time. However, a community is 
now established in the vicinity of the river, so we must deal with the existing situation. 

A flood hazard is related to the water surface elevation of the river. This in turn is the result 
of two factors: the flow rate of the river and the bed cross-section. Flow rate is determined by 
precipitation and flow processes in the river system upstream. The river bed cross-section is 
determined by the rate of supply of sediment to the reach in comparison with the sediment 
transport capacity of the flow. The elevation of the riverbed significantly affects the water 
surface elevation at a given flow rate. At the Franz Josef Glacier township, the main cause of 
the developing flood hazard has been the increase in elevation of the river bed. This has been 
going on since the 1890s, originally in response to natural processes, but more recently in 
response to the very control measures that have been implemented to reduce the flood hazard. 

A storm of February 17 1998 allows an estimate to be made of the present flood hazard in 
quantitative terms. This storm delivered 195 mm of rain to Franz Josef Glacier township, a 
moderate fall by local standards and one that would be exceeded about every one to two 
years on average. During the storm, water levels rose to the extent that properties 
immediately to the west of the river were evacuated, and emergency top-ups were placed on 
several of the stopbanks. These indicate that the limits of the capability of the protection 
works have been reached. It is therefore concluded that the present flood hazard is such that 
about once a year, there is a serious threat to the facilities on the west side of the river. 

During the February 1998 storm, there was no need to reinforce the east bank protection. 
Above the "heliport" (formerly "airstrip") stopbank, the east bank protection is of a higher 
standard than elsewhere, but the banks protecting the Franz Josef Glacier Hotel and oxidation 
ponds are not. If the river during that flood had flowed mostly to its east side rather than to its 
west, these banks would have been seriously threatened. There is no way of knowing where 
the river will attack during the next flood; therefore it is concluded that, during an event of 
the magnitude of the annual flood, all protection works except those on the east bank above 
the former airstrip may be threatened with failure. 

Thus, floods are likely to cause serious damage at any of the susceptible locations every year, 
except on the east bank above the "heliport" stopbank. 

The facilities on the east bank above the "heliport" stopbank (the northern bridge approaches 
and the church) are safe from overtopping during an annual flood at present bed levels. 
Depending on the behaviour of the river, however, the northern bridge approaches could be 
outflanked by erosion, because the high gravel bank upstream of the approach is only lightly 
protected. In a larger flood (say a five-year event), however, the higher-standard protection 
may be threatened, mostly by severe aggradation of the bed and burial of the works. 

In general terms, the flood hazard is greater now than it has ever been, because of the 
unprecedented present elevation of the river bed. 

Sediment delivery from the Franz Josef Glacier to its proglacial valley during its present 
advance may be greater than in the past, but the rate at which the Waiho River is transporting 
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this to the flood-susceptible reaches downstream has not increased commensurably. There is 
no evidence that sediment delivery from the Callery system is, or has in the recent past been 
other than normal. In the near future, therefore, there is no indication that changes in the 
water and sediment delivery to the problem reaches could ameliorate the situation. 

 

6.0 BREAK-OUT SCENARIOS 

Six break-out scenarios are considered the most likely to occur in the near future, as a result 
of high flows overtopping or breaking through the stopbanks, or causing the Waiho River to 
break out laterally to the Tatare River. The high flows will be accompanied by high sediment 
loads and may be associated with substantial bed aggradation which will allow break-outs to 
occur at lower high flows than might otherwise be needed to cause a channel shift. 

In each case, the exact path followed by the river when it breaks out is difficult to predict; in 
general the water will flow perpendicular to the topographic contours, but local drainage 
paths, vegetation and minor topographic detail not visible on maps will influence the flow 
path in the early stages. Sediment build-up, and ease of scour of the land along the flow path 
will also influence the flow as the new channel becomes established. 

 

6.1 Break-out through the true left bank above the SH 6 bridge 

This would cause water to flow north parallel to the Glacier Access Road until it entered the 
Holiday Park at the bend in SH 6. Much of the water in the new channel would flow north-
west through the Holiday Park and re-enter the present bed of the Waiho at the downstream 
end of the stopbank protecting the Holiday Park. Some of the water, however, could flow 
west, following old channels through the forest until it entered Wombat Creek, which would 
lead it to Docherty’s Creek. The flow would then follow Docherty’s Creek to its present 
confluence with the Waiho. The extra water and sediment added to Docherty’s Creek would 
cause it to change its course, particularly in the vicinity of the end of Gibbs Road. At the 
lower end of Docherty's Creek, break out into the coastal forest or Neils Creek could occur. 

This break-out is likely to occur. The Waiho bed is at present aggrading rapidly above the SH 
6 bridge, its left bank protection there is not strongly armoured, and the energetic flow and 
sediment deposition at the Callery-Waiho confluence place a powerful channel against this 
bank. A break-out could occur by overtopping and washout or by direct erosion. Once the 
river was out of the old channel, the SH 6 bridge approach works would tend to keep it on a 
new course. The diversion could be reversed during low flows with little difficulty. A large 
proportion (33 to 66%) of the Waiho flow could be involved in this break-out, because the 
river is very mobile at this section and usually flows in one channel. 

Taking into account division of flow at the Holiday Park, initially as much as a quarter of the 
Waiho flow might enter Docherty’s Creek. If the break-out were not rapidly contained, 
however, this could quickly increase to half of the flow. It is unlikely that a channel to 
Wombat Creek would degrade significantly because the gradient to there is about the same as 
in the present bed. In its passage through the kilometre of bush west of SH 6, the developing 
new channel is likely to aggrade, but if the river were to become established in Wombat 
Creek, headward-cutting through the aggraded new channels would be likely. 
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This break-out could be inhibited by filling the depression between the raised glacier-access 
road and the terrace on which Lake Wombat sits. Alternatively, it could be prevented from 
continuing to Docherty’s Creek by extending the SH 6 stopbank above Canavan’s Knob 
along the west side of the Holiday Park to tie in to the high ground at the south of SH 6. The 
flooding would then be limited to the left bank Holiday Park area and areas upstream. Such a 
stopbank extension is needed to minimise the damage area in Section 6.2 (below). 

 

6.2 Break-out through the Holiday Park 

This would result from failure of the true left bank below the SH 6 bridge. The outcome 
would be similar to that in Section 6.1,- Waiho water and sediment in Docherty’s Creek. 

This break-out is quite likely to occur. The Waiho River narrows at the SH 6 bridge, and the 
line of the north bank above the bridge, ending in the north bridge abutment, sometimes 
directs the main channel directly at the Holiday Park stopbank. This bank has moderate rock 
armouring, but is not as strong as that on the north bank, and could not long withstand direct 
attack. Once the bank is breached, emergency repair work may be difficult, and the break 
could enlarge rapidly due to the fall from the riverbed to the lower ground outside the bank. 
A substantial portion of the total river flow could be quickly captured by this breach. 

Some of this water would flow back into the Waiho at the north end of the Holiday Park: 
extension of the SH 6 stopbank could make all of the break-out water do this. 

 

6.3 Break-out across SH 6 south of Canavan’s Knob 

This would result from overtopping or breaching of the bank beside SH 6. Over about 500 
metres, the river often flows hard against this bank. The river bed is slightly above road level 
for much of this distance. The bank is augmented by stub groynes, but otherwise has no rock 
protection and historically has not resisted direct attack by a main channel for long. Again, 
emergency repair would difficult in a major event, and so an initial breach will enlarge 
rapidly to take a substantial proportion of the flow. The river bed here is very wide, so direct 
attack on the bank can easily occur - more easily than in a narrower reach. 

Following such a breach, water would probably follow the road as well as moving west 
through the trees. Depending on the location of the breach, water and sediment would 
eventually reach either or both of Wombat Creek (through the trees) or Gibbs Creek (via SH 
6), and thence to Docherty’s Creek. 

This break-out has occurred historically, and has been reversed by repair of the stopbank. 
Past break-outs here have not led to incision of the river bed and rapid capture of larger 
flows. This probably is because the slope of the land away from the river is very similar to 
the gradient of the river itself. Hence, a permanent channel change at this reach is unlikely to 
have any effect on river behaviour upstream. 

 

6.4 Break-out between Canavan’s Knob and Rata Knoll 

6.4.1 Immediately north of Canavan’s Knob 
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An old stopbank north of Canavan’s Knob is not tied in to the high ground of the Knob, and 
the river has outflanked it in recent high flows. A break-out through the trees here has already 
begun due to recent aggradation. When this new channel is active, water flows due west from 
Canavan’s Knob, then north-west to rejoin the Waiho River at Rata Knoll. If it becomes fully 
developed as a major channel, aggradation of its bed could cause it to break out further, to 
join Docherty’s Creek in the vicinity of the end of Gibbs Road. 

It is unlikely that this break-out will develop rapidly or take a large portion of the Waiho 
flow; it must develop through forest and there is little difference in elevation between the 
river bed and the forest floor. It seems unlikely that a main channel will access this spot in the 
lee of Canavan’s Knob. Being hidden from sight, however, it has developed unnoticed and 
could become a major flow path unexpectedly at some future time unless monitored. 

 

6.4.2 South-east of Rata Knoll 

Immediately north of the old stopbank referred to in 6.4.1 (above), river-bed levels are such 
that a break-out is possible due west. Further north, closer to Rata Knoll, a 1-metre-high 
terrace prevents a break-out with present river levels. This break-out would lead water south 
of Rata Knoll, then in a north-westerly direction into recent flood channels now blocked off 
by Eatwell’s Stopbank; these channels run across Gibbs Road, then parallel to Waiho Flats 
Road and eventually into Docherty’s Creek. This break-out would take some time to become 
established, as a low terrace has to be surmounted at the outset, and since a measure of 
aggradation is needed to accomplish this it is less likely to occur than other break-outs. Direct 
impingement by a major channel could however quickly accomplish such aggradation. Once 
water and sediment entered the recent flood channels in quantity, the watercourse would 
become well established. The result would be inundation of a considerable area of the Waiho 
Flats to the east of Waiho Flats Road. 

Access to the break-out site in flood would not be too difficult if this were the only area 
threatened; if the danger were recognised in time, it would be relatively easy to prevent or 
reverse the development of this break-out. 

 

6.5 Break-out at Eatwell's (Milton’s) Stopbank 

This bank was built to prevent break-out at the outside of the right-hand bend of the river past 
the end of the Waiho Loop. This point appears to act as the apex of a sub-fan, and recent 
channels radiate from it over the quadrant from west to north. 

Through reconstruction after past failures, Eatwell’s stopbank now is one of the better 
constructed banks on the Waiho, and the river presently shows no sign of threatening to 
overtop or breach it (probably because aggradation here seems to have been minimal since 
1948). It ties in to Rata Knoll and so cannot be outflanked to the south, and it continues far 
enough north to make outflanking at the downstream end of little significance. 

To break out here, the Waiho would have to aggrade so much that other break-outs (e.g. 
6.4.2) would probably occur first; hence this break-out is classed as “unlikely”. Its 
consequences would be widespread inundation both west and east of Waiho Flats Road, 
extending as far as the confluence of the Waiho with Docherty’s Creek; once it occurred it 
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would be difficult to prevent from developing because the circumstances needed to initiate it 
are so severe. 

 

6.6 Break-out into the Tatare River 

This threatens to occur in the near future, because the Waiho bed is very close to the level of 
the Tatare fan surface to the north of the oxidation ponds (and exceeds this level locally). 
Between June 1997 and March 1998, the north bank of the Waiho eroded more than 200 
metres towards the Tatare, a kilometre below the oxidation ponds. A further 500 metres of 
erosion will bring the Waiho to the edge of the 15-metre-high Tatare terrace. The height 
difference now is so low that a major flood could easily cross the "divide" and accomplish the 
break out. There are no river control works in place to prevent this. 

The consequence of this event will be rapid headward erosion of a nick-point (waterfall) in 
the Waiho system. Once established this course will be impossible to reverse, because the 
fine-grained Tatare gravels that underlie both the Tatare and Waiho river beds in this area 
will be easily eroded by the Waiho. As it erodes headward, the mini-gorge thus created will 
capture an increasing proportion of the flow of the Waiho. The extent to which this gorge will 
widen cannot easily be predicted, but it is relevant that the Tatare, having experienced just 
such a nick-point recession after it broke through the Waiho Loop about a thousand years 
ago, now flows in an active bed about 200 m wide, in a gorge about 500 m wide. The larger 
Waiho could presumably develop a wider gorge. There is no obvious reason for the headward 
erosion to cease before it reaches the Waiho-Callery confluence, nor for the depth of the 
primary incision to reduce significantly on the way (at least until it encounters the large lag 
boulders that were visible in the bed of the Waiho about a century ago). In due course, 
however, the sediment eroded from the gorge will tend to re-aggrade the bed downstream. 
The headward incision could threaten the present riverside facilities at Franz Josef Glacier 
township with undercutting and collapse. A large volume of eroded sediment will be moved 
into the Tatare, and will accumulate downstream of the gorge through the Waiho Loop. The 
bed of the Tatare would then aggrade upstream as its base level is raised. Lake Pratt may be 
filled with sediment, and unless action is taken to prevent it, Waiho-Tatare water could at 
some future time flow into Lake Mapourika, and thence to Okarito. 

If action were taken before this Tatare break-out occurs, it could be prevented by a 5-
kilometre-long stopbank along the present north bank of the Waiho from the Franz Josef 
Hotel to the Waiho Loop. Given the present tendency of the river to erode the north bank, a 
bank of the height and standard of the Eatwell's stopbank would appear to be needed. 

 

7.0 OPTIONS FOR FUTURE MANAGEMENT OF THE WAIHO RIVER 

Here we consider the family of options that the community might choose from for future 
management of the Waiho river system. We do not consider capital costs of implementing 
these options, or the likely damage from choosing a particular one or not choosing one.  

7.1 Hold the river on its present course 

This option requires continued maintenance and repair of existing stopbanks and the urgent 
construction of about five kilometres of new, high-grade stopbank along the Green's frontage 
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from the oxidation ponds to the Waiho Loop. To be truly effective, it also requires urgent 
upgrading of existing stopbanking on both banks from the Callery Junction to Canavan's 
Knob on the left bank and the oxidation ponds on the right. The upgrading, however, is to an 
unknown higher standard. Because of the extreme likelihood of structural damage to 
buildings on the left (south) bank in the event of river break-out there, stopbanks should be 
designed to higher standards than needed to protect from the flood of 2% probability in a 
year, but there will still be need for emergency evacuation of people from the southern bank.  

Bigger, higher stopbanks will lead in the short term to a further need for even bigger, higher 
stopbanks. Within about 10-15 years, stopbanking would be needed to keep either the Callery 
or Waiho, or both, out of the central township area. 

If repairable failures are accepted, this option is sustainable at high cost, but probably only 
until the Alpine Fault earthquake, when most high stopbanks will collapse along much of 
their length, and the upper fan head all may be overwhelmed by floodwater, gravel or both. 

Advocates of part or all of this option are reminded that on current knowledge, the 
earthquake is more likely to occur in the next 20 years than is the 2%-probability flood. 

New, bigger and better stopbanks require Resource Consents and capital to invest. 

 

7.2 Let the river choose a new course (the do-nothing option) 

This option simply stops maintenance of existing works until the river breaks out somewhere. 
There is no cost (except to those who suffer damage as a consequence) until the river makes 
its choice. Break-out into the Tatare is the most likely, because the Waiho River can 
accomplish this incrementally even at normal flow by slowly whittling away at the low bank. 

There is, however, a risk that unmaintained stopbanks on the left bank will fail first. Failure 
there is most likely first in the left-bank reach above SH 6. This will have the same outcome 
to the Holiday Park area as a direct breach through the Holiday Park stopbank. Floodwater 
would probably re-enter the Waiho River at the lower end of the Holiday Park around the end 
of the stopbank. The expected outcome of such a break out is destruction of the Glacier Motel 
and Holiday Park, and possible destruction of the southern approach to the SH 6 bridge and 
Glacier Access Road. Any local degradation of the Waiho River bed around the stopbank 
breach is likely to be temporary, because the potential storage area for gravel in the Holiday 
Park area is small. It might fill in one or two floods. Waiho water would initially return to the 
Waiho immediately downstream of the Holiday Park, but as this channel filled with gravel, a 
further break out down SH 6 towards Docherty's Creek would be inevitable in the short term. 

No Resource Consent or capital is needed to implement this option 

 

7.3 Choose a new course for the river 

Rather than take a chance on letting the river make the choice of a new course, a new course 
could be chosen for it. This would require first selection of one of several options for a new 
course, second obtaining a resource consent to implement the preferred option, and third, 
construction of the new channel with any new protection works that might be needed.  

This option perhaps demands less capital than several of the other options, but obtaining a 
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Resource Consent for at least one potentially viable channel option could be difficult because 
the long-term outcome of developing it is not readily predictable. 

This option has a safety advantage - the timing of the breakout can be known in advance, and 
the breakout water can be controlled (to some extent) while a new course is established. 

A new channel to the Tatare would be very easily constructed and is likely to lead to reversal 
of the current trend of continued aggradation at the fan head, but the long term outcome is not 
clear, and the extent of potential degradation could itself become a problem. That is, it is very 
likely to solve the present problems, but it is likely to lead to other problems, some of which 
might be worse than the present ones. 

There are several options for new courses to Docherty's Creek. All are longer courses than a 
new route to the Tatare. None are likely to lead to degradation problems. Some may not solve 
the present aggradation problems. Because of the width that will be needed for the new 
course, there is little possibility that a course in this direction could be developed without 
substantial disruption of the local community on the southern bank. 

 

7.4 Make a new course for the river 

This option is a variant on Option 7.3, but takes a more pro-active approach on channel 
selection by creating a course that would not otherwise be available to the river. 

For much the same capital cost required to fully implement a new course to and through 
Docherty's Creek, a deep channel could be cut directly through the Waiho Loop at a point 
close to where there is maximum height difference between the Waiho fan surfaces on either 
side of the Loop. 

This option would have the same desirable effects of upstream channel degradation as could 
be achieved with a river break-out to the Tatare, but with fewer undesirable "side effects". It 
has some advantages over a Tatare break-out: it maximises the potential drop across the 
Waiho Loop, and hence could maximise the potential degradation at the fan head; it allows 
more space to be created between the oxidation ponds and the river channel (the river could 
be shepherded to incise immediately adjacent to Canavan's Knob, well clear of the ponds). 
This option leaves the Tatare gorge through the Waiho Loop untouched, and keeps the Tatare 
river flow to help clear the toe of the Waiho fan below the Loop between major floods (as it 
does today). This may help keep open the Lake Pratt drainage to the Waiho, and minimise the 
potential for diversion of the Waiho into Lake Mapourika and the Okarito drainage.  

A cut through the Waiho Loop minimises the Waiho River encroaching onto "new" territory. 
Degradation at the fan head to the level of 1890, however, would destroy the present highway 
bridge and could bring other problems as the newly deepened channel adjusts by widening. 

 

7.5 Choose where the river will not make a new course 

This option has the same intended outcome as Option 7.3, but it requires no Resource 
Consent or channel construction. Stopbanks are strengthened where it is desirable to prevent 
a river break-out, and nothing is done, or stopbanks are deliberately weakened where a new 
course would be desirable, or less destructive. For this option, the timing of the break-out is 
unpredictable, and the route of the new course is less readily controlled (or may be 
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uncontrollable). If the choice is to prevent break-outs at the locations of existing stopbanks, 
this option becomes the option of maintaining the status quo (section 7.6 below). 

 

7.6 Maintain the status quo 

This option continues to manage existing river-control works as they have been managed in 
the recent past, but with no new work. That is, repair or replace banks as they are damaged or 
destroyed, and add to their height as the bed rises. The expected outcome is relatively easily 
predicted in its early stages. Ongoing costs in the short term (one to two years) are likely to 
be similar to those over the past ten years (but the parties on whom the costs fall may 
change). Substantial repair work is likely to be required several times each year. There is 
about a 1-in-2 chance that Waiho floodwater will enter the Holiday Park area in any year, and 
a 1-in-3 chance that the heliport bank will be damaged or circumvented in any year. 
Buildings on the Franz Josef Glacier Hotel site are likely to suffer flooding of the ground 
floor several times a year, and there is a 1-in-5 chance each year that the adjacent stopbank or 
that adjacent to the oxidation ponds will be breached. The SH 6 stopbank upstream of 
Canavan's Knob is less substantial, but still has perhaps a 1-in-5 chance of being scoured 
through in any year, which would allow floodwater to temporarily enter Docherty's Creek.  

In the very short term, within the next few years or less, the status quo option will lead 
directly to break-out of the Waiho into the Tatare downstream of the oxidation ponds. 

This option requires no change to existing resource consents. It does require a well rehearsed 
emergency evacuation procedure for the settlements on the left bank of the Waiho River.  

 

7.7 Consider the whole hazard picture 

In choosing how to manage problems with the Waiho River in the future, it is important to 
remember that there are three independent hazard types to be concerned with: normal 
flooding; dam-break flooding; and the earthquake. Any management strategy (choice of 
options) must be able to cope with each of these, and with any pair of them in combination. It 
is not sufficient to consider each in isolation. 

 

8.0 GENERAL HAZARDS TO THE COMMUNITY 

In addition to the hazards associated with the river, the community at Franz Josef Glacier also 
is exposed to the hazards associated with earthquakes, storms (wind and rain), landslides, 
transport accidents (road and air), fire, terrorism (bomb and arson threats), and hazardous 
chemical emergencies. Of these, the earthquake hazard, which may also include accidents, 
fires, hazardous chemicals, flooding and landslides, is by far the most dangerous, and most 
far-reaching in its effects. When (if) the community is able to solve the problems with the 
river, there will still be left the even greater problem of how to ensure that the community 
survives the impending Alpine Fault earthquake relatively intact. The community faces little 
choice with the earthquake: the choice is to be prepared, or to be unprepared. Individuals, 
however, may choose to leave the area before it strikes. There can be no useful advance 
warning of when this, or any other, earthquake will strike. 
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8.1 Effects of earthquakes 

New Zealand's most significant fault line, the Alpine Fault, which marks the boundary 
between two great tectonic plates moving relative to each other at 30 to 40 millimetres per 
year, passes through the township of Franz Josef Glacier. Appendix 2 summarises the 
available knowledge on past and likely future movements of the fault. On the basis of past 
geological record, the Alpine Fault is expected to cause a severe earthquake of Magnitude ca. 
8.0 in the near future. It has an estimated 10% chance of occurring within the next five years 
(Yetton et al. 1998). This earthquake will be very destructive in south Westland, and 
particularly destructive at Franz Josef Glacier. 

The lack of a historical record of strong earthquakes thus is not a reason for complacency. 
With an expectation for movement on the Alpine Fault soon, the area is much more 
dangerous than Wellington with respect to large earthquakes. Yetton et al. (1998) analyse the 
likely effects of the next Alpine Fault earthquake, but they present a broad overview that may 
be misleading to people in south Westland. Because of the uncertainties in modeling very 
high shaking intensities, Dr Yetton and his colleagues did not portray the likely distribution 
of  very severe ground shaking (Modified Mercalli Earthquake Intensity scales MM10 to 
MM12) in the next Alpine Fault earthquake, and so limited their estimate for Franz Josef 
Glacier township to MM9 or greater. Because it is centred on the surface fault-rupture trace, 
the community centre at Franz Josef Glacier is likely to experience an earthquake of shaking 
intensity MM10 OR GREATER. Few, if any, structures in the township will be undamaged 
in this earthquake: some will be seriously damaged by this shaking intensity alone. 

Most buildings in the area are single-story, wood-frame structures, and most should survive - 
shaken, stirred, but generally not "trashed". Building contents, however, are very likely to be 
"trashed".  In the space of seconds to a few minutes, the land surface, and everything firmly 
attached to it will move by more than the dimensions of the average room. Everything 
unattached will be thrown violently about - refrigerators, freezers, pianos, water beds and 
people included. Diving under a table or a desk may be feasible early in the onset of shaking, 
but once there, you will have to stay with it for some minutes in its wild, erratic waltz around 
the room. Controlled movement during the most severe shaking will be impossible. 

The likely earthquake loading will exceed the current earthquake design code (by more than 
ten times, in terms of energy applied in the shaking). It is uneconomic to require all buildings 
to exceed the code. 

In the Alpine Fault earthquake, there will be minor subsidence of many areas of alluvial 
gravels, especially of artificial fill material. This may rupture water and sewer lines. There 
also are likely to be a great many rock-falls and landslides, as was demonstrated in the 1994 
and 1995 Arthur's Pass earthquakes. If in winter, there are likely to be many snow avalanches 
from mountain slopes, and in any season, many ice avalanches. The main concern to the 
village area is if landslides or snow avalanches in the drainage basins of any of the rivers are 
large enough to temporarily dam their flow. Break-out flooding from rupture of landslide-
dammed lakes can be catastrophic at most scales from small streams to large rivers. It is to be 
hoped that any earthquake-induced landslide dam does not form during heavy rain, and that 
there will be time to evacuate threatened areas (and a safe place to evacuate to). No other 
useful mitigation strategy is possible. 

All services are likely to be lost to the township for days to weeks. There will be no 
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reticulated water supply, no sewer, no electricity, and no telephone line. Ground access to the 
village is likely to be lost for weeks if bridges are destroyed. Where SH 6 crosses steep 
slopes, there will be countless slips on the road, and the carriageway will have fallen away in 
many places. For the expected magnitude of earthquake, medical services throughout much 
of South Island will be damaged or overloaded. 

 

8.2 Decreasing the community's vulnerability to earthquakes 

A severely damaging earthquake at Franz Josef Glacier is inevitable. On our current 
knowledge, the Alpine Fault is by far the most likely site of New Zealand's next major 
earthquake. No other geological structure (that the earthquake community knows about) in 
New Zealand has as great as a 10% chance of giving a Magnitude 8.0 earthquake within 5 
years. At Franz Josef Glacier (and elsewhere in south Westland), it will damage many 
buildings and their contents. It will damage community infrastructure, and it will cause some 
fatalities. There is evidence of earthquake unpreparedness. The lifelines most vulnerable to 
earthquake damage are water supplies for fire control, and communication and evacuation 
routes for medical care. 

The water tanks for town supply at Franz Josef Glacier are perched on a vulnerable site and 
are seriously endangered in a large earthquake when water for fire control will be critical to 
save lives. In addition to the possible loss of the tanks, the water main will rupture because it 
crosses the fault. A very different design of water main would be required to cope with the 
expected 8-metre slip of the fault. Such designs are more appropriate for gas mains, where 
the escaping gas would be a major hazard in itself. There is need to make provision for an 
alternative water supply for fighting fires. There will be a 3-metre high scarp between the 
Fire Service Depot and the rest of the town, so alternative water supplies will have to be 
independent of road transport. 

There will be injuries in the community. Loss of telephone communications within and 
outside the community area will severely hamper the distribution of medical aid. Evacuation 
of the more severely injured will be a priority. Overland routes all are likely to be closed by 
losses of bridges, their approaches, and the road carriage-way on steep slopes. Helicopters 
and light aircraft will be essential to evacuate the seriously injured. The severity of the 
shaking over a large area of South Island may stretch the limits of New Zealand's resources to 
respond quickly to all places in need. 

We inspected few homes or work places for earthquake preparedness. A level of general 
unpreparedness is apparent. A number of simple strategies can be easily implemented to 
greatly reduce damage in the inevitable earthquake. For example: 

• Paint cans can be stored at or close to ground level where they will not fall far enough to 
burst open.  

• Open shelves can have a raised lip across the front to inhibit shelf contents from "walking" 
off the shelf in a shake. 

• Wood stoves can be strongly anchored in place. 

• Hot-water cylinders and header tanks can be tied (strongly) to the internal bracing of the 
house. 
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• Bedroom ornaments and bookshelves can be placed so that nothing can fall on a bed. 

• Ornaments can be removed from places where they could fall on seating, or on hard 
surfaces (such as stone fireplaces).  

• Valued ornaments can be attached to shelves or walls with "blue tack" or restraining 
wires. 

• Televisions, microwave ovens, computers and the like can be anchored in place. 

• File drawers can be kept locked when not in use. 

• Freestanding shelves such as book cases can be secured in place by screws into adjacent 
timber framing. 

• No one should work adjacent to, or below large panes of unreinforced glass.  

Some of these measures are likely to be of only limited value in a Magnitude 8 earthquake. 
For this, the most practical measure is to ensure that property is adequately insured against 
earthquake loss. Because there will be some deaths as a result of this earthquake, through 
people being unavoidably in the wrong place at the wrong time, the prudent resident will 
have written their will and lodged it with agencies outside the local community long before 
the earthquake strikes. 

It is a community responsibility to ensure that it has on hand appropriate resources to provide 
a useful emergency response. It could be days before help comes from outside. This will be 
too late for fires, many injuries, or if total evacuation of the fan-head area is needed. 

With the Alpine Fault "spring" already well wound and set to trigger, perhaps the most 
frightening statistic about the impending earthquake, until it occurs, is that the most likely 
day for the next rupture is TODAY, and if the fault does not rupture today, then the next 
most likely day is tomorrow and so on. The time for action to mitigate potential damage is 
NOW. 

 

8.3 Security of hazardous chemicals 

In any community there are a number of hazardous chemicals. The most abundant in the 
Franz Josef Glacier area are fuels (petrol, diesel, Avgas, Jet A1, and LPG), and the most 
vulnerable are those in the storage tanks at the petrol station because of their extreme 
proximity to the Alpine Fault. All fuel storage tanks are somewhat vulnerable in a large 
earthquake, but rupture of petrol tanks in the township centre is very likely because they are 
buried within the zone expected to be strongly deformed during the fault rupture. Accidental 
ignition of leaking petrol vapour would cause a disastrous fire in the community's "central 
business district"  (compounded by the presence of LPG tanks that could also rupture in the 
shaking). 

Diesel, Avgas and Jet A1 will be essential commodities after the earthquake. There is need 
for a community emergency response team to know where all the supplies are, and need to 
take precautions to prevent their destruction in the earthquake or subsequent fires. 

For the earthquake, there is need to store other hazardous chemicals at floor level to prevent 
their containers rupturing when they fall, but for the floods, they need to be safely above 
ground level to avoid being washed away. 
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8.4 Protection of essential services 

The oxidation ponds are an essential service in the operation of the township. They may be 
the most used structures on the fan, and certainly are the most undervalued community 
resource. In view of their high replacement value, they are currently exposed to an 
unacceptably high risk of damage from flooding, scour or river break-out. We assess the 
present level of protection as adequate to protect the ponds from an event of about five-year 
recurrence interval if the main channel were against the bank. This assessment does not take 
account of the likelihood of substantial aggradation against this bank in the near future. It 
also does not take account of the likelihood of a break-out of the Waiho into the Tatare. If 
such an event were to occur while the main channel of the Waiho was near the oxidation 
ponds, it is likely that ponds would be lost in the resulting channel widening as the new 
course became established. They deserve a higher standard of protection than is currently 
supplied. Earlier, the ponds were afforded greater protection through the control works in 
place to protect the now-destroyed airstrip.  

The ponds are not constructed to survive the likely ground shaking of the Alpine Fault 
earthquake. But after this event, there would be little waste water to dispose of, and little 
likelihood of an intact sewer main either.  

Other essential services include water for fire fighting, the SH 6 bridge which provides the 
community link across the Waiho, and local helicopters and other light aircraft, and their 
pilots and fuel supplies for emergency medical evacuation. These services will be needed 
immediately following the Alpine Fault earthquake. There is little that can be done to protect 
the highway bridge, but its present temporary construction makes it easily repaired. The 
township water supply probably can not be economically protected from the earthquake. 
Water for fire fighting will have to be obtained from elsewhere and delivered to the fires by 
pump, truck, or monsoon bucket. 

The remoteness of south Westland in the event that the highway is substantially destroyed 
puts a special value on light aircraft. They, their fuel supplies, and their necessary ancillary 
services, deserve careful thought as to their earthquake-safe siting and storage. The more of 
them that are available locally, the faster emergency medical evacuation can take place. 

One essential service not presently endangered by flood or earthquake is the community 
rubbish dump. The existing facility, however, may lack the capacity to cope with the load 
that will be generated by the Alpine Fault earthquake. 

Electricity and telephone communications are not listed here as essential services because 
they will always be vulnerable to storm damage and they are certain to be destroyed in the 
earthquake. Radio and satellite telephone communication will be all that will be available. 

 

9.0 FURTHER WORK 

In preparing this report, we were mindful of a number of gaps in knowledge which limited 
the quality of advice which we could give. Some of these gaps will be easily filled in future 
work, while others may always remain gaps. 

We have presented some testable hypotheses about: 
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• the effects of stopbanks on aggradation in the Waiho River; 

• the consequences of a break-out of the Waiho into the Tatare; 

• the effects of a cut through the Waiho Loop; 

• the effects of movement of the Alpine Fault on river behaviour at the fan head. 

These hypotheses are most easily tested in laboratory-scale physical models.  

The recognised hazard of a dam-break flood from the Callery River can be mitigated either 
by relocation of the community or by provision of an adequate warning system. It remains to 
be determined if it feasible to establish and maintain a system which compares flows of the 
Waiho and Callery Rivers and sounds a warning if the Callery River level drops 
unexpectedly. Such a warning system may be needed for the welfare of the entire community, 
not just for the part of it on the south bank at the fan head. 

The amounts of water and sediment being carried by the Waiho-Callery River system is not 
currently known although much engineering work has been carried out in the past which 
required these data. Either the quantities should be measured, or only engineering work that 
does not require these data for design should be carried out. If either of these tasks were 
easily carried out, they would have been undertaken long ago. 

Any likely break-out of the Waiho River will have far-reaching environmental effects. In 
order that they can be monitored, and mitigated where this is desirable or practical, there is 
need for information on the present environments likely to be affected. 

Our analysis of the behaviour of the Waiho River system has used results from a number of 
on-going geological studies. Further work on the Alpine Fault is likely to refine the detail on 
the history of fault movement, but it is not likely to alter the general conclusion that a major 
earthquake is imminent. Work in progress on the evolutionary history of the Tatare River fan 
will provide accurate information of the timing of major events there, but there is no 
immediate prospect for equivalent information on the Waiho River fan. 

There is urgent need to prepare for the earthquake. A part of this should be an appropriate 
emergency response plan, and verification that this can be implemented. Preparations should 
not await resolution of the flooding problems.  

 

10.0 FUTURE REVIEW OF THIS NATURAL HAZARD ASSESSMENT 

This hazard assessment should be reviewed after the occurrence of a natural hazard which 
causes serious damage to the community infrastructure or after 10 years, whichever is the 
sooner. Such reviews should be repeated on a similar schedule. 
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APPENDIX 1: CONSULTANTS' BRIEF 

The report will include these points: 

• Overview of the Waiho as a natural system whose behaviour over history has shown 
us....... 

• Overview of human interventions and their implications. 

• Assessment of the hazards (earthquakes, flooding, aggradation, avulsions, etc.) including 
prioritisation. 

• Assessment of the adequacy of existing protection.  

The report is intended for the community hence it must be written accordingly. 

Through mutual agreement these terms of reference may be varied as information is gained 
during the assessment work. 
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APPENDIX 2 - PROBABILITY ESTIMATES FOR RUPTURE OF THE CENTRAL 
SECTION OF THE ALPINE FAULT 

Kelvin Berryman 

Institute of Geological & Nuclear Sciences Ltd 

Introduction 

Two approaches are commonly used to estimate the probability that a large earthquake will 
occur in the future in a given area. The return period of rare large earthquakes can be 
estimated from the records of smaller magnitude earthquakes in the area, using a frequency-
magnitude relationship of earthquake occurrence (Gutenberg and Richter, 1949). A more 
direct approach uses available geological evidence to determine the timing and size of 
earthquakes that have caused rupture of the fault surface in the past; it is presumed that these 
events will occur again in the future. 

In New Zealand, the historical record of seismicity is short (ca. 150 years at most), and 
through most of that period there have been surprisingly few earthquakes occurring on or 
near the central section of the Alpine Fault. This has led to the concept of a seismic gap along 
this section of the fault (Adams, 1980). However since the New Zealand national 
seismograph network was upgraded in the late 1980’s the lack of seismicity has been less 
obvious (Figure A1). This has led to the speculation that the earlier record has not been as 
complete as once thought, or that the number of earthquakes occurring, even of small and 
medium magnitudes, may vary over time (Anderson and Webb, 1994). Because the historical 
record of seismicity is brief, it cannot be confidently extrapolated to estimate the return time 
of the large, surface-rupturing earthquakes. 

Large plate-boundary faults such as the Alpine Fault and the San Andreas Fault in California 
have high average rates of movement, but it has been shown that in most places movement is 
not occurring continuously. Rather, the stress applied accumulates over a long period - 
several decades to several hundred years - until friction on the fault plane is overcome and 
the elastic strain is released in a major earthquake. This concept of an earthquake “cycle” 
means that the fault has some sort of “memory” of its rupture history. Studies of many faults 
have shown that the faults show recurring patterns of rupture, with the return period of 
rupture having mean and standard deviation estimates. 

If future movement on the fault were unrelated the previous movements, (i.e. the fault had no 
“memory”), then the likelihood of future rupture would be random, and the probability would 
follow a Poisson statistical distribution. If the fault had a very good “memory”, then the 
return period would be very regular with only a small standard deviation about the mean, and 
the probability would be best estimated from a sharply peaked log-normal distribution 
(Figure A2). In this latter case the elapsed time since the last event is an important 
consideration. 

Recurrence of large earthquakes on the Alpine fault 

Evidence of single displacements of 6-8 m dextral slip and up to 3 m of vertical slip have 
been found at many points along the northern and southern sections of the Alpine Fault (e.g. 
Wellman, 1953; Berryman, 1979; Hull and Berryman, 1986; Berryman et al., 1992), but data 
have been lacking from the central section of the fault, and little is known of the timing of 
events. Cooper and Norris (1990) produced evidence for the most recent rupture on the South 
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Westland section of the fault in the range of 1650-1720 AD. 

Yetton et al. (1998) have recently compiled all existing, as well as a substantial amount of 
new information, from the northern and central sections of the fault. Much of the data are 
indirect, coming from growth patterns in forests, aggradation in rivers that are presumed to be 
related to earthquakes, and dating of landslides over wide regions. As well as the indirect 
data, some direct information of the timing of fault rupture has been obtained from 
radiocarbon dating of displaced units observed in trench exposures of faults. 

In summary (including work in progress in the Waitaha Valley by Wright et al., 1997), the 
most recent movement the Alpine Fault seems to have occurred around 1717 AD, and 
involved an approximately 400-kilometre-long rupture with about 8 metres of dextral slip in 
the southwest, decreasing to perhaps 6 metres in North Westland (Figure A3). The previous 
rupture was in about 1625 AD and its extent is currently known from north and central 
Westland. This event may be a single rupture of at least 250 km length or two smaller events 
that were closely spaced in time. Another event in about 1425 AD has been recognised, also 
from north and central Westland (Figure A3). Two further events, inferred from sediment 
pulses into sag ponds along the fault scarp, from widespread occurrences of landslides and 
river aggradation events, and from lichenometry measurements on rockfalls by Bull (1996), 
are estimated by Yetton et al. (1998) at 1220 AD ± 50 years, and 940 AD ± 50 years. 

The available information on timing of ruptures on the Alpine Fault, including the elapsed 
time since the last one in 1717 AD, indicates that the time between ruptures varies from 92 
years (1625 to 1717) to about 280 years (940 to 1220, and 1717 to present). There is thus 
considerable variability about the average recurrence interval of 211 years. The variability 
may in part reflect the incompleteness of available data. It is uncertain if the identified events 
represent the rupture of the whole length of the fault in a single event, or represent closely 
spaced events rupturing only part of the fault. In addition, only the most recent event has 
been dated in South Westland. Current work in the Haast area by the Institute of Geological 
and Nuclear Sciences and Otago University will refine the timing of the last three events in 
South Westland. 

Probability estimates 

For this study, probability estimates are presented for 100 year and 500 year return periods. 
The 100-year time frame is chosen because flood hazard is commonly estimated at this return 
period, and the 500-year return period is the level of hazard encapsulated in 1992 New 
Zealand seismic resistant design code (NZS4203), and in the Building Act (1991). 

The Poisson model 

The simplest model for estimating the probability of rupture of the Alpine Fault is the 
Poisson model. This model, however, assumes random fault (earthquake) behaviour, and thus 
the elapsed time has no effect on the probability of a future event. Based on this assumption, 
the probability of an earthquake occurring the day after the previous earthquake is the same 
as the probability of an earthquake occurring after several hundred years of inactivity. 

To calculate the Poisson probability for the Alpine Fault for 100 and 500 years, all that is 
required is the average recurrence interval for movement on the fault. The date of the last 
event is not relevant. If the event record shown in Figure A3 is accepted, the probability can 
be calculated simply from: 
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PN = 1 - exp (-t/tr) 

where PN is the probability over the time period; t = time period in years; and tr = the average 
recurrence interval (in this case 211 years, based on the recurrence interval of the last five 
events and the lapsed time since 1717 AD). 

PN for 100 years = approximately 38% 

PN for 500 years = approximately 99% 

The Poisson model does not take into account the concept of earthquake cycles, or elastic 
strain accumulation. The pattern of repeated large earthquakes on a fault suggests that some 
period of time is required for strain to accumulate after an earthquake before the fault is 
capable of producing another large earthquake. Poisson models tend to overestimate the 
probability of an earthquake soon after a previous earthquake, but seriously underestimate the 
probability of fault movement after considerable elapsed time (280 years for the Alpine 
Fault). Thus the probability for Alpine Fault movement calculated by this method is too low 
and substantially underestimates the true probability 

Conditional probability 

If rates of elastic strain accumulation, fault strength, and frictional considerations influence 
the recurrence of large earthquakes on a fault, then the elapsed time since the last event and 
some measure of the variability in periodicity, and perhaps the variation in the size of slip, 
are required parameters for estimating the probability of future occurrence. 

The small number of data sets that contain recurrence intervals of active fault rupture 
strongly limits our ability to estimate the probability density distribution. Each fault would 
take thousands of years to define the full variation of recurrence interval which it could 
possibly exhibit. Nishenko and Buland (1987) proposed combining recurrence histories of as 
many examples as possible of a particular class of faults (for example, plate boundary faults 
such as the Alpine Fault); this compilation would then be large enough to make some 
meaningful deductions about variability in fault behaviour. This substitution of space for time 
is widely used in geology, seismology, geomorphology and hydrology when time ranges of 
events are large. In this way Nishenko and Buland (1987) obtained a data set of 40-80 
recurrence intervals by combining the past 2-4 earthquakes from 20 similar faults. They 
developed statistical fits to the variability in the recurrence parameter, and derived a standard 
deviation about the mean of 0.21. In other words the maximum variation was up to around 
75% of mean recurrence interval. 

Yetton et al. (1998) extended the approach of Nishenko and Buland (1987) by updating their 
data. They have added an improved Pallet Creek paleoearthquake history from the San 
Andreas Fault (Sieh et al., 1989) and data from recent investigations of other segments of the 
San Andreas such as Wrightwood (Fumal et al., 1993; Biasi and Weldon, 1994); Phelan 
Creek (Sims, 1994) and Indio (Sieh, 1984). Yetton et al. (1998) also added the three most 
recent events identified on the Alpine Fault. In total Yetton et al. (1998) added 16 new 
recurrence intervals to the 54 in the original Nishenko and Buland dataset and recalculated 
the critical parameters in their method. The revised standard deviation about the mean 
recurrence is 0.34.  

By adopting this wider standard deviation proposed by Yetton et al. (1998), a conditional 
probability of 75-95% (average 85%) was calculated for the 100-year period from 1998. For 
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the 500-year return period, the probability is close to 100% because the elapsed time will be 
more than twice the maximum interval between events. Yetton et al. also report the time 
window within which there is a 90% chance that the next movement of the Alpine Fault will 
occur. Using all available data from the Alpine Fault, this interval is 1782 AD - 2014 AD. 
There was about an 80% chance that rupture would occur by 1998AD, but it did not. This 
does not mean, however, that there is now a 90% chance of it occurring in the next 16 years 
to 2014AD. As time passes, the time to the 90% chance of rupture occurring also drifts, but at 
less than a year for every year that passes. In 1782AD, there was a 90% chance that the fault 
would rupture within 232 years: in 1998, there is a 90% chance that it will rupture within the 
next 140 years (28% chance by 2014 AD, or 16% within 10 years). 

A further indication that we are approaching the time of the next fault rupture is to use 
information on the amount of displacement during a single event. The largest single-event 
displacements reported for the Alpine Fault are in the range of 8-9 metres (Berryman et al., 
1992; Sutherland and Norris, 1995). Such measurements are relatively common for the South 
Westland section of the fault. In North Westland, single-event displacements of 6-8 metres 
have been reported from the Hokitika and Otira areas, and from further north (Berryman, 
1975; Berryman et al., 1992; Yetton et al., 1998). Dividing these single-event displacements 
by the 25-30 mm/yr average horizontal slip rate measured along the fault indicates it would 
take 200-360 years to produce 6-9 metres of potential slip. This compares with the time since 
the last event of 280 years. Alternatively one could say that 7 to 8.4 metres of potential slip 
have accumulated since the last movement of the Alpine Fault. 

Uncertainties 

The above analysis is an aggressive approach to estimating the conditional probability of 
rupture of the Alpine Fault within the next 100 years. It uses data that have not been widely 
reviewed (e.g. Yetton et al., 1998), with little direct dating from the actual fault. Work in 
progress at Haast should improve the dating of past rupture events in that area, and this may 
allow us to better define to the length of fault rupture for the 1625 AD and 1425 AD events. 

This analysis assumed a model of fault behaviour where recurrence interval of rupture is a 
fundamental parameter. The available data however suggest that the intervals between fault 
movements are sometimes short (i.e. several earthquakes closely spaced in time) and 
sometimes widely spaced. This impression from the Alpine Fault is also seen on well-studied 
active faults in other parts of the world, where fault ruptures commonly appear to be grouped 
into “clusters” separated by longer-than-average “gaps” (e.g. Grant and Sieh, 1994; 
McCalpin and Nishenko, 1996). At present this variability is merged into a single standard 
deviation on the mean recurrence interval, but this may obscure a characteristic of large 
earthquakes on active faults. The current period since the last rupture of the Alpine Fault in 
1717 AD (281 years) is longer than other inferred times between movements, which may 
imply that the next Alpine Fault event will involve rupture of the whole fault from South 
Westland to North Westland, as the 1717 AD event appears to have done. 
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