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Abstract

Sediment core and trench data from a coastal lagoon on the West Coast of the South Island, New Zealand are used to investigate
evidence for co-seismic subsidence and associated tsunami inundation. Physical data are used to document a salt marsh soil buried
~80 cm below the modern sediment surface that is locally covered by a gravelly sand bed. The sediment record also contains
geochemical and biological (diatom and foram) evidence for abrupt changes in salinity of lagoon waters that link to subsidence,
tsunami flooding and to the open versus closed state of the lagoon tidal entrance. At the local scale, these relationships allow for
separation of tsunami evidence from other agents of environmental change in the lagoon. We also propose a conceptual connection
between these local changes and regional drivers of landscape development, most notably major earthquakes and resultant pulses in

sediment supply to the coast.
© 2007 Published by Elsevier B.V.
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1. Introduction

Multiproxy analysis of coastal wetland sediments in
the Northen Hemisphere has produced important re-
cords of past environmental changes, including extreme
events such as earthquakes and tsunamis (e.g., Atwater
and Moore, 1992; Shennan et al., 1996). Research has
generally focused on sites where a demonstrable linkage
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can be made between tsunamis and their generating
mechanism (e.g., Pacific northwest, Atwater, 1987;
Clague, 1997; Clague et al., 2000). This work and work
on other palaeotsunami deposits elsewhere (Dawson
et al., 1988; Bryant et al., 1992; Minoura et al., 1996)
have served to considerably improve our geological
understanding of palaeoseismic-related signatures pre-
served in the sedimentary record. In New Zealand, we
have the opportunity to test and develop this approach
by utilising a largely undisturbed and unstudied coastal
sediment record that has formed in a seismically active
setting (Goff et al., 2001).

New Zealand sits astride the boundary between two
major tectonic plates, the Australian and the Pacific. In
historical times seismic activity has ranged from barely
detectable earthquakes and tsunamis that have caused no
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damage, to large-scale earth and sea movements (Eiby,
1982; Hull, 1986). Recent reviews of past tsunamis in
New Zealand estimate that large, locally generated
events, possibly with a nationwide impact throughout
the North and South Islands, occur about once every
500 years (Goff and McFadgen, 2002). The most recent
events in New Zealand occurred around the mid 15th
century AD and are associated with a cluster of large
earthquakes, one of which was an Alpine fault rupture
(Goff and McFadgen, 2002).

The Alpine fault is over 400 km long, extending
almost the entire length of the South Island (Berryman
et al., 1992; Bull, 1996; Norris and Cooper, 1997). This

single right-lateral, oblique slip fault raises the Southern
Alps at a rate of about 5-8 m per 1000 years (Bull,
1996) (Fig. 1). The last three major ruptures (magni-
tudes of ca. 8.0 M,,) are believed to have occurred in AD
1717 (along a 375 km segment), ca. AD 1630 and ca.
AD 1460 (involving a minimum 300 km segment, with
a vertical offset of 2.15+0.4 m) (Yetton et al., 1998;
Wells et al., 1999). A smaller rupture occurred in AD
1826 (Wells et al., 2001; Cullen et al., 2003).

This study examines the recent sedimentary record of
Okarito Lagoon on the West Coast of the South Island,
with the aim of testing for evidence of co-seismic sub-
sidence of the lagoon floor and tsunami inundation,
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Fig. 1. Location map showing Okarito Lagoon, West Coast of South Island, New Zealand.
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given the context of frequent Late Holocene seismicity.
To achieve this we undertook a multiproxy analysis of
sediment cores and trenches from the lagoon. This paper
is an extension to earlier work on the same sample set
published by Goff et al. (2004).

2. Okarito Lagoon

Okarito Lagoon, Westland (43°11’S, 170°14’E) is
one of the largest estuarine inlets on the West Coast of
the South Island. It is 10 km long and 2—4 km wide with
an open water area of ~20 km? and fringing salt marsh
area of ~ 10 km? (Fig. 1). The lagoon is separated from
the sea by a narrow sand barrier with a maximum
elevation of ~4 m. The width of the barrier decreases
southward from 500 m to 100 m at Okarito village,
where an ephemeral tidal inlet provides the only direct
connection to the open coast. From vertical aerial
photographs it is evident that the lagoon has a complex
history of barrier breaching, with four previous tidal
inlets ending as blind channels against the landward side
of the barrier (Fig. 2). The form of these channels has
been maintained as surrounding marshes have devel-
oped upon probable relict flood tidal delta surfaces. Our
investigation focused on the southemmost marsh island
around which the active inlet channel bifurcates, and on
the tidal flat to the south of the main channel. Tidal
range on the coast varies from 1 m on neaps to 2.1 m on
spring tides. Holocene sea-level history for the West
Coast is poorly understood in detail, so we assume a
similar history for elsewhere in New Zealand which
records stillstand since ca. 6.5 ka (Gibb, 1986).

Rainfall in the region exceeds 10,000 mm/year,
resulting in high erosion rates (5—12 mmfyear) of the
fractured, easily eroded schists and glacially derived
materials found to the east of the Alpine fault (Berry-
man et al., 1992; Norris and Cooper, 1997). To the west
of the Alpine fault, the overprint of Late Quaternary
glacial activity is evident in the large moraines that
surround Okarito Lagoon (Griffiths and McSaveney,
1986). Freshwater flow into the lagoon is derived from
three sub-catchments; Okarito Forest (9700 ha) which
supplies six“small creeks that drain the moraines and
enter along the northeast shoreline, and; Lake Mapour-
ika (ca. 9000 ha) and Waitangi-taona River (8300 ha)
catchments which drain to Okarito River and Deep
Creek at the southern end of the lagoon. These catch-
ments extend further inland to drain terrain formed in
schist and glacial outwash and are traversed by the
Alpine fault in their upper reaches (Fig. 1). The majo-
rity of the sediment load is captured in Lake Mapourika
and Lake Wahapo, however, and it is the moraines that

Legend
o core site

o trench site f‘;. -

'8 blind channel}é ,

Fig. 2. Aerial photograph mosaic (unrectified) for Okarito Lagoon
taken January 1988, showing core and trench sites for this study and
interpreted former tidal inlets (marked as blind channels). Source:
Land Information New Zealand, courtesy Department of Conserva-
tion. Crown Copyright Reserved.
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provide the main source of coarse material entering
Okarito Lagoon (MacPherson, 1981). At its mouth,
Okarito River is constructing a small (~1 km?) delta
that has infilled the southeast corner of the lagoon. A
raised shoreline bench, estimated at 1 m above present
water level, fringes the landward side of Okarito La-
goon and is backed by shallow (<5 m) caves cut into
cliffed sections of moraines.

An additional key component to landscape develop-
ment in the West Coast region is seismicity. In parti-
cular, ruptures on the Alpine fault have been shown to
have resulted in widespread forest destruction due to
ground shaking (Wells et al., 1998, 2001; Cullen et al,,
2003), river aggradation (Yetton et al., 1998), and rapid
coastal dune building (Goff and McFadgen, 2002); the
latter two being direct consequences of increased se-
diment yield from hillslopes following earthquake-
induced landslides. It is in this context of strong seismic
overprinting on the coastal landscape that we recognized
the potential for a record of seismic events to be re-
corded in Okarito Lagoon.

3. Data sources and analytical techniques

Sediment cores and trenches were used to investigate
the shallow stratigraphy of southern Okarito Lagoon.
Cores were collected by the vibracore technique at two
sites from the lagoon—marsh interface and close to high
water mark (Fig. 2). Compaction was measured prior to
core recovery. In the laboratory, cores were split
lengthwise, logged and sub-sampled for grain size,
organic content, micro- and macrofossils, geochemical,
and radiocarbon analyses. Trenches (1-3) were dug by
hand to confirm the lateral continuity and character of
sedimentary units observed in the cores. Additional
sediment samples were collected from trenches. Grain
size was measured on 23 core and 12 trench sub-samples
using a laser particle sizer (Galai™) system that
determines particle size using the time-of-transition
principle (Molinaroli et al., 2000). Results are reported
for particle volume measurement. For trench 1, we
determined grain size on two samples by mechanical
sieving at half-phi intervals from —1 to 4 phi. Organic
content of cores was determined via loss-on-ignition
(LOI) treatment of 17 sub-samples by ashing at 500 °C for
4 h. Results are reported on a dry weight basis. Elemental
analysis of seven sub-samples from core 6 was undertaken
using ICP-AES, following sample preparation by a multi-
acid ‘total’ digestion. Geochemical data have been
normalised for grain size following Loring (1991).

For diatom analysis, 15 sub-samples from core 6
were prepared following standard techniques (e.g., Bat-

tarbee, 1986). Fossil diatoms were mounted in Naphrax
and counted using light microscopy at a magnification
of x 1000. A minimum count sum of 600 diatom valves
was used. Identification of diatom taxa and their palaeo-
environmental interpretation is based upon established
floras and other texts, including Hustedt (1927-1966,
1930, 1957), Van der Werff and Huls (1957-1974),
Cleve-Euler (1951-1955), Krammer and Lange-Berta-
lot (1986-1991), Hendey (1964), Round et al. (1990),
Simonsen (1967), De Wolf (1982), Admiraal (1984),
Denys (1991a,b), Vos and de Wolf (1993a,b, 1994),
Foged (1977, 1978, 1979). John (1983), Crosby and
Wood (1958, 1959), Wood et al. (1959), and Wood
(1961, 1963). Results are presented as a percentage
frequency diagram, showing the key diatom species
within salinity (Halobion) groupings.

For foraminiferal analysis, eight 10-cm® samples of
sediment were processed from cores 4 and 6. Samples
were washed over a 63-um sieve to remove mud and
heavy liquid floatation used to concentrate foram tests in
sandy samples. Census counts of all benthic forams
were made for each sample. Estimates of the tidal ele-
vation at which each foram species was deposited were
made using the Modern Analogue Technique (Hayward
et al., 2004), based on relative abundance data for 250
benthic foram fauna from modern estuaries and coastal
lagoons around New Zealand (data from Hayward et al.,
1999a). Similar techniques to determine estimates of
tidal elevation based upon foram assemblages have been
used elsewhere (Scott and Medioli, 1986; Van de Plas-
sche et al., 1998). In this study, elevation estimates are
presented as tidal range derived from the five most
similar modern faunas in the analogue set. The reli-
ability of these estimates depends on a number of
factors, including the range of tidal levels; depths and
environments represented by the analogue samples; and
the breadth of the tidal and depth ranges of the major
taxa. Previous studies (e.g., Hayward et al., 1999b) have
shown that the most precise tidal ranges can be obtained
near high tide level from marsh faunas, with far broader
ranges observed in intertidal mud and sand flats and in
subtidal environments. Some taxa with restricted high
tidal ranges in near normal salinity situations (e.g.,
Haplophragmoides wilberti, Trochamminita salsa, Mili-
ammina fusca) are known to live in abundance through
the entire tidal range and also subtidally in more brack-
ish environments (e.g., Hayward et al., 1999a). Thus an
assessment of the setting and probable salinity of the
lagoon or estuary at the time is important in estimating
tidal level.

Foram data also provided for calculation of an arti-
ficial salinity index (SI). This was done using detrended
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and canonical correspondence analysis, based on the
relative abundance of foram species following Hayward
et al. (2004). SI estimates range between 0 (freshwater)
and 10 (normal marine salinity).

4. Results
4.1. Stratigraphy and sediment texture
All five sample sites preserve a similar stratigra-

phic record within the upper metre (Figs. 3—5). The
bulk of the sediment matrix comprises massive beds

of fine to medium sand and silt with local shell and
wood fragments. Within this, each core and trench
recovered a buried marsh soil at variable depths,
ranging from 50 cm (trench 3) to 88 cm (trench 1)
with depths in the cores falling within this range. The
soil unit is olive-brown to grey-olive silt that encloses
fine root hairs and wood fragments. It is in sharp
upper contact with overlying sediments that are dis-
tinguished by a colour change to light grey and ab-
sence of organic material, an_observation supported
by LOI results which show a 1-2% decrease across
this contact (Fig. 6).

Core 4 Stratigraphy

Description

Samples Depth(cm)
- 0

Silt. Modemn tidal flat, brown, organic-rich

Well sorted fine sand. Subtidal facies, light grey.
Orange mottles near upper part of unit.

Gradational contact

— 50
- . . "
; Sharp contact |® *C date on root from buried soil: 1800+80 Years BP
Silt, buried oxidised facies. Tidal flat, brown.
o Wood fragment at 67 cm.
i Well sorted, massive silts and fine sand. Subtidal facies, light grey.
X Bl Dessication cracks and indistinct orange motties
A (e 100 immediatety below oxidised layer. Fine roots 90-100 cm.
Core 6 Stratigraphy  Description
Samples Depth(cm)

Moderately sorted medium sand fining upwards
to a well sorted fine sand.
Grey grading upwards into Olive grey ‘modern soif’ at 13 cm.

Moderately sorted fine sand.
Grey grading upwards into Olive grey.

Gravel on erosional contact.

1~ 50
Shell hash layer, 58-62 cm.
o
ogg: Sharp contact
o [ Gradational contact

Moderately sorted fine sand fining upwards to silt.
Grey grading upwards into an Olive brown organic-rich ‘buried soil'.

@ “C dales on articulated Austrovenus stutchburyi
shells; 10580+60 and 800+80 Years BP
@ "'C date on bulk soll: 2170+70 Years BP

Legend for Figs. 3, 4, and 7

<1 Organic-rich silt

R B] Gravel
Silt and/or fine sand ao  Shell, broken

€>  Shell, articulated
Medium sand

>=— Wood fragment - rafted

# Foraminifera sample
© Diatom sample

§ Root

& Desiccation crack

‘,1 Dessicatlon crack

Motiles

& Radiocarbon sample

Fig. 3. Graphic logs for cores 4 and 6.
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Mean grain size (mm)
0.6 08

Trench 1 Stratigraphy

Depthicm) Description

0

Silty fine sand, no roots. Dull yellow orange 10YR 7/2 grading down to
Bright yellowish brown 10YR 6/6.
No shell, orange mottles throughout.

Upward fining from small rounded pebbles (a axis up to 6 cm)

| Gradational contact to grave! to medium sand. Shell hash in upper part of section.

Rip-up clasts (mud balls) 65-79 cm. Rafted organics 65-868 cm.

*  Gradatianal contact Whole shells and articulated bivalves near contact.
1. Sharp contact Light grey 2.5Y 7/1 grading down to grey 7.5Y 4/1.
3100 Organic-rich mud, many fine raots. Buried soil, grayish olive, 7.5Y 5/2.
Trench 2 Stratigraphy —
Deptiom)  D@SCTiPtion

0

Silty, very fine sand with rafted wood fragments.
No shell. Light grey 7.5Y 7/1.

| Gradational contact
- Silty. very fine sand. No shell, but oxidised fossil imprints of cockles.
Orange and grey mottles. Light grey 7.5Y 7/1.

B Gradational contact

Massive, very fine sand. Light grey 7.5Y 7/1.

Silty, very fine sand with fine roots. Olive brown 2.5Y 4/3.
Possible burrow fills or desiccation cracks appear as

Sharp, | ular contact
rreg {_ small (<1 cm) vertical lenses of grey silt.

Massive, very fine sand. Greyish yellow brown 10YR 5/2.

Mean grain size (mm)
0.15

0.05

Trench 3 Stratigraphy
Depth(cm)

Description

0

Massive, silt to very fine sand. grey, 7.5Y 5/1 grading down core to 10Y 4/1.
No shell, orange mottles throughout.

g;aad':ﬁ:::'l:&ntad & Coarse sand and medium gravel, Grey, 7.5Y 6/1.

60 Silt, buried oxidised facies, soll. Dull yellowish brown 10YR 4/3. Many fine roots.
Silt and very fine sand. Grey 5Y 4/1.

Fig. 4. Graphic logs for trenches 1-3.

In trench 1, the buried soil is overlain by a 23-cm-
thick bed of shell-bearing gravel and coarse sand. Gra-
vels are rounded and shell remains include whole and
articulated bivalves near the base of the unit that
become more commonly broken toward the upper con-
tact at 65 cm depth. Shell species are dominated by the
cockle Austrovenus stutchburyi, with rare examples of
the intertidal bivalve Mactra ovata and the gastropod
Amphibola crenata. In addition, remains of macro

algae, most likely seaweed, were recovered. On the
landward side of the lagoon (core 4 and trench 2)
sediment above the soil comprises 20—30-cm-thick beds
of very fine sand that are massive and carry shell imprints
and wood fragments. In trench 2, the contact is on an
irregular surface and grey fine sands have filled vertical
cracks that penetrate 10 cm into the buried soil; these
cracks may have originated as burrows or, more likely,
via desiccation of the soil when exposed subaerially. In

doi:10.1016/j.sedgen.2007.01.019
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(B)

70 Ul Sequence fining-urprEsds
cm W o & very (s = ———___

Pebblss gravel
and shgll

1]
Burigd Sgll ———*

75

85

90

Fig. 5. (A) Core 6 showing soil surface buried 77 cm below modern tidal flat and articulated bivalve (dustrovenus stutchburyi) dated to 90060 years
BP; (B) trench 1 showing buried soil overlain by rounded pebbles, gravel and shell, grading upward to very fine sand. Scale card is 10 cm long;
(C) trench 2 showing buried soil overlain by very fine sand; arow indicates infilled desiccation crack or burrow. Tape is 50 cm long; (D) trench 3

showing buried soil overlain by fine sand.

trench 3, the buried soil is overlain by a 4-cm-thick bed
of coarse sand and medium-sized gravel that grades
upward to a 40-cm-thick deposit of very fine sand,

4.2. Geochemistry

A suite of elements assayed from core 6 show a clear
peak in concentration within the silty sands that overlie
the buried soil (Fig. 6). Thus, iron (Fe), sulphur (S),
titanium (T1), strontium (Sr), barium (Ba), calcium (Ca)
and sodium (Na) all increase markedly at 77 cm depth
and then decrease within the successive bed of fine-
medium sand to 20 ¢cm depth. Although S occurrence in
sediments is mostly related to post-depositional diage-
netic processes, Fe-rich sediments are more likely to fix
S than Fe-poor sediments. Thus S and Fe can be used
together as indicators of palaeosalinity in sediments
(Thomas and Varekamp, 1991; Daoust et al., 1996;
Chagué-Goff and Gotf. 1999). Na has also previously
been used as a proxy for marine influence in marsh and
lagoon systems, because of the relatively high Na con-
tent in seawater compared with freshwater (Lopez-
Buendia et al., 1999; Chagué-Goff et al., 2002). Simi-
larly, Sr, Br and Ca also occur in higher concentrations
in marsh and wetland sediments inundated by saltwater

(Minoura et al., 1994; Chen et al., 1997). Titanium is
used here as an indicator of heavy mineral concentration
(e.g., magnetite). Therefore, the peak Ti concentration
directly above the buried soil within core 6 is interpreted
to record the preferential sorting and concentration of
heavy minerals. In a lagoon, this particular response
would most likely occur during a high energy event such
as initiated by tsunami, storm surge or large river flood.
Collectively, the measured elements all indicate a sud-
den rise in the salinity of lagoon waters, followed by a
gradual return to brackish conditions.

4.3. Diatoms

Diatom analysis of core 6 provides further evidence
of palaeoenvironmental change for Okarito Lagoon
(Fig. 7). Fossil diatoms are generally well preserved and
abundant, providing a flora of >240 taxa. In the lower
part of the core (87-100 cm depth) brackish water taxa
(mesohalobion, M; oligohalobion, Ol-indifferent and
OH-halophile) comprise >50% of the diatom assem-
blage. Melosira juergensii and Mastogloia elliptica do-
minate the M taxa, with lower but significant values of
Mastogloia pseudoexigua, Cyclotella operculata var.
mesoleia and Rhopolodia gibberula (OH — indicative

doi:10.1016/j.sedge0.2007.01.019
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A
Core 6
Stratigraphy silt % organic content (%) Fe (%) S (ppm) Ti (ppm)
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Fig. 6. (A) Geochemical data for core 6, also showing trends in silt and organic content. (B) Trends in silt and organic content for core 4.

of sandy conditions). The OI group, rich in Cocconeis
placentula and Cyclotella stelligera, maintains frequen-
cies >32% throughout the interval. There is a distinct
background marine influence (polyhalobion, P), but at
frequencies <15%. Marine diatoms are represented
by Diploneis suborbicularis, Raphoneis surirella,
Raphoneis minutissima, Thalassiosira eccentrica and
Paralia sulcata. These are littoral species, as are many
of the M group; together representing shallow marine-
brackish water ,of sandy foreshore, sand flat and mud
flat environments (Denys, 1985). Open coast marine
species are also recorded in the sediments, confirming
tidal exchange at the site. These marine diatoms are
sparse and often broken, indicating their presence is
probably the result of progressive inwashing and re-
working of more open water, sandy marine sediments.

The interval between 67 and 87 cm depth is dis-
tinguished by alternating peaks of marine (P) and
brackish—freshwater (OH, OI) groups. Marine diatoms
have peak concentration at 85 cm (20%) and 73 cm
(27%), the former associated with the buried soil and
the latter with the overlying fine sand. Species typical
of sandy-mud flat environments are prominent in
these apparently marine-enriched sediments, with in-
creased values of Raphoneis spp., Cocconeis scutellum,
Nitzschia granulata, N. punctata, Striatella unipunctata
and Licmophora spp. Many other marine species
occur in low numbers, including Cerataulus turgidus,
Actinocyclus octonarius var. crassus, Grammatophora
oceanica, Triceratium spp. and Navicula byra.

A decline in marine taxa (P) occurs above 85 cm
depth through the buried soil and high values of brackish
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Fig. 7. Summary plot of diatom salinity (halobiom) groups for core 6. Polyhalobion (P) — marine conditions, mesohalobion (M) — full brackish

water conditions, oligohalobion (OI) — freshwater, salt indifferent; ol
freshwater conditions.

(OH) and freshwater taxa (Ol) are recorded, with indi-
vidual maxima for R. gibberula, C. placentula and
Navicula tr;ipunctata. Full brackish water species (M)
increase abovethe soil with Mastogloia spp., Melosira
Jjeurgensii reaching peak frequencies at 75—73 cm, with
lower values of Synedra fasciculata and Nitzschia
sigma. Many of these OI-M group diatoms are well
adapted to intertidal-salt marsh conditions and are
tolerant of drying-air exposure.

Between 67 and 30 cm depth, freshwater (OI) species
dominate and frequencies of brackish (M) diatoms
decline from >30% to ~20%. Above 67 cm the marine

igohalobion (oh) — some brackish water tolerance; halophobous (H) —

signal collapses to <2% above 50 cm. The OI and OH
diatoms (together >60% at the base of this interval) are
joined by a range of other fresh—brackish water species,
increasing to near 80% at 30 cm. These include many
Achnanthes spp., with Achnanthes hungarica replacing
C. placentula as the dominant taxon at the top of the
zone. The diatom assemblage suggests an overall prog-
ressively shallowing, fresh—brackish water and river
flood-dominated environment.

Many of the fresh and brackish water diatom valves
(OI/OH and M groups) are relatively unworn and whole
valves dominate the general diatom assemblages (Fig. 7).
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This lack of breakage is unusual given the potential for
high-energy conditions and the reworking of sediments
at the site. Many of the OI-M diatoms however represent
low to medium salinity environments (Cl <20 ppt) and
are predominantly of local to in situ origin, with growth
under intertidal—subaerial conditions. Peaks in key fresh-
water (OI) species between 87 and 30 cm are associated
with terrestrial plant debris most probably introduced
during river flooding. Overall, the diatom record from
core 6 shows deposition generally in brackish to brack-
ish—freshwater environments of estuary—lagoonal-
marsh settings. Toward the top of the sedimentary
succession a marked decline in the percentages of marine
species and the associated increase in freshwater species
indicate an increasing isolation from the sea.

The higher resolution diatom analysis between 67
and 87 cm shows at least one distinctive marine ‘event’
in the sedimentary sequence. It is worth noting that, if a
lower sampling resolution had been maintained, then the
extremes in diatom values (75-70 cm) would not have
been apparent. Two peaks in marine diatoms are re-
corded. The first, at 85 cm, coincides with the base of
the buried soil. In the context of a consistent marine
diatom signal this peak is most likely an artifact of the
stratigraphy and sedimentary processes. Marine diatoms
tend to be more heavily silicified and resistant to de-
struction. Local reworking of sediments to concentrate
the marine diatoms present may be the explanation, as
supported by the increase in broken valves at this level.
The second marine peak (at 73 cm) is more distinctive
and associated with the sand bed overlying the buried

soil. This peak is bracketed by higher concentrations of
fresh—brackish water diatoms (e.g., 80 cm within the
soil, 71 cm in fine sand) that we interpret to represent the
prevailing background shallow water, intertidal to salt
marsh environment at the site.

4.4. Foraminifera

Forams extracted from cores 4 and 6 are used here to
reconstruct palaeco-elevation ranges: for depositional
surfaces (Table 1). A total of 10 taxa are reported, in
varying abundance and diversity through the sediment
record. In core 6, a sample taken directly below the
contact between the buried soil and overlying sand (79—
81 cm) is co-dominated by agglutinated faunas that
indicate weakly brackish conditions (dmmotium fragile,
H. wilberti) on a lagoon or marsh surface that was close to
mean high tide level (range 2—2.2 m above MSL). Within
the overlying sand (71-73 cm), the fauna is strongly
dominated by calcareous taxa (i.e., Ammonia aoteana)
indicative of increased salinity and a broader elevation
range spanning subtidal (2.5 m below MSL) to mid-tide
(1.75 m above MSL). Four samples taken from the
interval 64-5 cm in core 6 all indicate a return to lower
salinity, based on consistently high values for H. wilberti
and THE strong presence of 4. fragile and M. fusca.
Estimated elevations range from mid-tide (1.9 m above
MSL) to mean spring high tide level (2.2 m above MSL),
most likely in a brackish marsh environment.

Foram concentrations from the two samples taken
from core 4 are very low, allowing estimation of tidal

Table 1
Foraminifera data for Okarito cores 4 and 6
Core 6 . Core 4°
Depth (cm) 5-7 50-52 57-59 62-64 71-73 79-81 101-103 54-56  76-78
Number of species 5 3 2 5 6 5 5 1 4
Total foram count 104 201 3 25 163 360 250 7 11
Relative abundance %
Ammobaculites exiguus 0 0 0 0 0 0 0 0 46
Ammonia aoteana 0 0 0 20 77 1 35 0
Ammotium fragile 13 54 0 4 5 34 19 0 18
Elphidium excavatum f. clavatum 0 0 0 0 1 0 4 0
E. excavatum f. excavatum 0 0 0 0 1 0 0 0 0
Haplaphragmoides wilberti 64 45 67 68 14 30 34 0 18
Jadammina macrescens 1 0 0 0 0 0 0 0 0
Miliammina fusca 21 1 33 4 2 14 8 100 18
Pseudothurammina limnetis 0 0 0 0 0 21 0 0 0
Trochamina inflata 1 0 0 4 0 0 0 0 0
Elevation (m above MSL) 1.9-22 20-22 n/a 2.2 -25-1.75 2.0-22 -25-115 n/a -2.5-1.75
Salinity index 2.6 24 2.6 33 5.5 22 6.2 32 43

® Core 6 from edge of Leptocarpus similis salt marsh at neap high tide level, ~ 1.8 m above MSL.
b Core 4 from Leptocarpus similis salt marsh at mean high tide level, ~2 m above MSL.
¢ n/a indicates insufficient foram preservation to allow application of MAT.
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Table 2
Radiocarbon results for Okarito cores
Laboratory code ~ Core  Depth  dC" C' age years  Calibrated age BP  Material dated
(cm) BP (2 sigma)
Wk8989 4 65 -26.3+0.2 1800+60 1870-1560 Root from buried soil
‘Wk8987 6 78 —21.5+£0.2 2170+70 2340-1950 Bulk soil/organics — buried soil
Wk8618 6 82 1.1+0.2 10,580+60 12,280-10,880 Articulated shell — Austrovenus stutchburyi
‘Wk8986 6 82 -0.6+0.2 900+ 60 630455 Articulated shell — Austrovenus stutchburyi

Calibrations based on Stuiver et al. (1998) using a AR of —30=+15 for marine shells (McFadgen and Manning, 1990).

level for only one sample (76—78 cm, Table 1). The fauna
from this sample indicate a wide elevation range, from
subtidal (2.5 m below MSL) to mean high water neap
(1.75 m above MSL).

In summary, the forams identified from these cores
provide evidence for abrupt changes in salinity during
the accumulation of the upper metre of Okarito Lagoon
infill. We have confidence in this evidence because the
preservation state of tests is moderate to good, there is
no evidence for reworking of older tests into the sam-
pled sediments and open marine fauna were not re-
corded; together indicating an intact and in situ faunal
assemblage that reliably reflects palaeo-salinity condi-
tions at the sample sites.

4.5. Radiocarbon ages

Radiocarbon results for four samples taken from cores
4 and 6 are presented in Table 2. Samples of buried soil
and root material from within yielded similar uncalibrat-
ed ages of 1800+60 years BP (Wk8989; core 4) and
2170+70 years BP (Wk8987, core 6). Two specimens of
articulated bivalve, taken from the base of the buried soil
in core 6, yielded contrasting ages of 10,580+60 years
BP (Wk8618) and 90060 BP (Wk8986). We view the
older age as unreliable on the basis that sea level was
about 30 m lower than present at ~ 10 ka and the area now
occupied by Okarito Lagoon would have ice-marginal
terrain. Contamination of sample Wk8618 by old carbon
is therefore assumed and the age rejected. The true
Middle Holocene age for the lower part of the lagoon
infill is supported by a C'* age of 6380+60 years BP on
articulated cockle (A. stutchburyi) recovered from 326 cm
depth in care 6 as part of a previous study (Goff et al.,
2004).

5. Interpretation and discussion
The preservation of a buried soil at similar depths

below the modern salt marsh and fringing tidal flat of
Okarito Lagoon is strong evidence for localized sub-

sidence. Results from diatom- and foram-based recon-
struction of palaeco-salinity support an interpretation of
abrupt changes in local environmental conditions across
the contact between the buried soil and overlying de-
posits. Thus, we recognize an increase in the salinity of
lagoon waters associated with increased water depth of
approximately 50 cm. Further evidence for increased
tidal incursion at core site 6 is given by geochemical data
that record a marked increase in a suite of elements to
indicate marine-enriched lagoon waters (especially
S, Na, Ca and Ba), associated with sediments directly
above the buried soil. We note, however, that these
sediments do not contain any open marine foraminifera
species, so that evidence for transport of material from
the open coast is lacking.

Sediments directly overlying the buried soil range in
grain size from coarse sand and gravel (trench 1 and 3)
to silty fine sand (core 4 and 6, trench 2). Our sampling
does not allow for detailed mapping of these deposits,
but local variability of grain size such as between core 6
and trench 1 (a distance of ~100 m) suggests that
sediment texture may vary with proximity to tidal chan-
nels, with channels being the likely source for local
reworking of coarse-grained sediments. These deposits
grade-upward to silty fine sands that contain an increas-
ingly dominant freshwater diatom assemblage, which
suggests that the site became less open to tidal influence
following deposition of the coarser bed. Abrupt declines
in geochemical indicators of saline conditions point to a
similar transition. On this basis, we interpret the finer
sediments as tidal flat deposits, formed under regular,
low-energy conditions.

Here we propose a scenario to account for the ob-
served changes in the shallow stratigraphy of Okarito
Lagoon. Given the proximity of Okarito Lagoon to the
Alpine fault, the most likely mechanism for subsidence
of the lagoon floor is earthquake activity. Co-seismic
subsidence has not previously been recognized for the
West Coast, but is well established for similar tectonic
settings elsewhere; most notably the Pacific Northwest
coast of the USA (Atwater, 1987). Subsidence of coastal
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lowlands has also been associated with tsunami inun-
dation of these coasts, with sedimentary evidence pre-
served as anomalous deposits (sand sheets) across the
subsided surface (Atwater and Moore, 1992).

This leads to the question — did co-seismic subsi-
dence of 0.5 m in Okarito Lagoon trigger a local tsunami
that left a sedimentary record? Based on the results
presented, we highlight the following as potential tsu-
nami evidence: (1) the gravel and pebble deposits in
trench 1, and to a lesser degree, the coarse sand and fine
gravel in trench 3 are a compelling indicator of high-
energy flow (metres per second) across the subsided soil
surface; (2) the abrupt rise in lagoon salinity as recorded
by geochemical data, diatoms and forams is consistent
with, though not exclusive to, sudden incursion of
marine waters, and; (3) the re-establishment of reduced
salinity conditions in sediments above the coarse-
grained deposits, as indicated by diatoms particularly,
strengthens the interpretation that higher salinities are
not the norm for Okarito Lagoon.

In evaluating the case for a tsunami in Okarito La-
goon (and adjacent coast), we must also consider other
scenarios as explanation for the observed sedimentary
record. For these alternatives, we draw upon geomor-
phic and historic evidence. We noted earlier that the
barrier to Okarito Lagoon has a series of blind channels
that terminate behind the modern foredune (Fig. 2).
These channels are interpreted as former tidal inlets.
Given that the current (micro) tidal prism of the lagoon
only requires one inlet, we assume that the lagoon has
always functioned as a single-inlet system, the location
of the inlet has shifted and that at times the lagoon has
remained closed. Support for this assumption is found
in the raised shoreline bench and shallow caves that
fringe the landward side of Okarito Lagoon. The sim-
plest explanation for this raised shoreline is that the
lagoon was up to 1 m deeper and closed to tidal ex-
change. An alternative is that the bench formed during
the Middle Holocene sea-level highstand. However, the
highstand remains to be convincingly documented for
this coast. Moreover, recent dendrochronological work
on the rimu (Dacrydium cupressinum) and kahikatea
(Dacrycarpus dacrydioides) forest that has colonized
the bench indicates that the oldest trees post-date AD
1832 (Goff et al., 2004). Thus, it is likely that low-
ering of the lagoon water level occurred shortly prior
to ca. AD 1830 and was presumably associated with
barrier breaching to re-establish tidal exchange, not a
change in relative sea level. Goff et al. (2004) propose
tsunami as the mechanism for barrier breaching and
identify a known tsunami in AD 1826 as the likely
event.

Further indirect evidence for subsidence and tsunami
along this coast is found in historical accounts from the
mid-nineteenth century and is summarized in Goff et al.
(2004). Of these accounts, keys for this study are two
reports of a drowned Maori village at Poherua (aka
Saltwater) Lagoon 11 km to the north of Okarito Lagoon.
The first report was from the explorer Thomas Brunner
in 1848 (republished in Pascoe, 1952} and the second in
1864 by Dobson, who later wrote, “At Poherua lagoon
there had been at one time a Maori village of con-
siderable size, the stumps of the posts of the houses
showing plainly...The land had sunk..., as these traces
could be seen at dead low water, spring tides.” (Dobson,
1930, p.72). Dobson also noted that local Maori were
unaware the village had ever existed, which suggests to
us that its subsidence and abandonment occurred well
before the 19th century. This site was last verified in the
1980’s (New Zealand Forest Service, in press).

Returning to the point regarding lagoon closure, this
will be achieved by accretion of the beach berm on the
barrier, leading to blocking of the inlet (a process that
occurs about once a decade today). Clearly, this requires
a positive sediment budget in the littoral zone and we
recognize the large gravel-bed rivers (Waiho River and
Cook River) to the south of Okarito Lagoon as obvious
long-term sediment sources for barrier construction.
However, it is unlikely that this supply has been at a
consistent rate. There is good evidence from the Haast
coast, ~100 km to the south of Okarito Lagoon, that
barrier construction has been episodic and linked to
fluctuations in sediment discharge from rivers draining
the Southern Alps. Reconstruction of the chronology of
dune-ridge formation by Wells and Goff (2006) has
identified a link to known earthquakes on the Alpine
fault. It follows that these events have led to increased
sediment supply to rivers from earthquake-induced
landslides, and in turn, to the coast. Given this event-
based fluctuation in sediment supply to barriers, perio-
dic closure of lagoons along the West Coast is an ex-
pected outcome.

To summarize, fluctuations in the salinity and water
level of Okarito Lagoon can be readily accounted for by
periodic opening and closing of the tidal inlet entrance.
However, this cannot be used to explain the placement
of gravel and coarse sand at relatively distal locations in
the lagoon, nor the preservation of a buried salt marsh
soil. The shallow depth of the gravel and sand deposits
also precludes transport as a lag along a tidal channel
because flow velocities in a <1 m deep channel inside a
microtidal lagoon would not exceed threshold for gravel
transport. We also discount river floods as a transport
mechanism on the basis that the competence of the
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Okarito River is limited to transport of coarse sand to the
delta front, which is on the opposite shore of the lagoon,
~ 1.4 km from the site of trench 1. Tsunami remains the
only plausible mechanism for transport of coarse sand
and gravel to this relatively quiescent location. And the
association with a subsided soil provides the important
link to palaeo-seismicity.

6. Age of this event?

Establishing the age for a palaeo-tsunami event is
problematic, with the best results often obtained by
dating material in sedimentary units above and below an
interpreted tsunami deposit, to “age bracket” the event.
Radiocarbon ages are often equivocal because of the
possible introduction of older reworked carbon (wood
and other macro-/microfossil debris) (Dawson, 1994;
Goff et al., 1998). We have already discounted one
reported age (10,580+60 years BP) on this basis. Ack-
nowledging the further possibility that organic material
in the buried soil contains old carbon derived from the
catchment, the two radiocarbon ages of 180060 years
BP and 2170+70 years BP are interpreted as maximum
ages for deposition of the enclosing sediments. Our
remaining radiocarbon age of 900+60 years BP is de-
rived from an in situ bivalve preserved within the buried
soil. The calibrated age of this sample is in the range
630-455 years BP (1320-1495 AD) and represents the
best age estimate for the subsidence event and tsunami.

This age correlates well with the earliest in a series of
recognized ruptures on the Alpine fault, dated to ca. AD
1450 (Bull, 1996; Yetton et al., 1998). Other ruptures are
dated to AD 1620, 1717 and 1826, with the latter gene-
rating a tsunami. These events are also comelated with
large-scale forest disturbance due to severe ground
shaking and landslides (Wells et al., 1998, 1999, 2001;
Cullen et al., 2003). It seems highly likely therefore that
the tsunami reported here is linked directly to the mid
15th century event, either as the direct result of sub-
sidence associated with onshore fault rupture, subma-
rine fault rupture (the southern segment of the Alpine
fault is submarine) or of submarine landsliding gene-
rated by an earthquake. These sources remain to be
verified, however, It is also suggested that the mid 15th
century event caused sufficient forest destruction to
trigger increased sediment supply to the coast and, in
turn, to closure of the tidal inlet to Okarito Lagoon.

7. Conclusion

Multiproxy analysis of a distinct sedimentary succes-
sion recovered at five sites in Okarito Lagoon provided

for reconstruction of palaeoenvironments that record co-
seismic subsidence of a salt marsh surface and inun-
dation of that surface by tsunami. Key criteria include a
buried soil, associated with major upward changes in
grain size, geochemistry, diatom and foraminiferal as-
semblages. Limited radiocarbon dating of the buried soil
suggests that the subsidence occurred in the mid 15th
century and was linked to a rupture on the nearby Alpine
fault. Of importance to this case is the necessity to
separate other possible mechanisms from the subsi-
dence-tsunami interpretation. Thus, geomorphic changes
to the barrier inlet are also recognized as an important
influence on lagoon water level and salinity, but not as a
causal mechanism for the deposits preserved in the la-
goon fill. Ultimately, however, there is a link because
those changes in barrier form can be potentially traced
back to major seismic events in the region. Further work
to test this hypothesis will require extension of the record
presented here to demonstrate repetition of the process
over time and across new study sites.
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